Loading [MathJax]/extensions/tex2jax.js
The Gaudi Framework  master (d98a2936)
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Macros Modules Pages
instrset.h
Go to the documentation of this file.
1 /**************************** instrset.h **********************************
2  * Author: Agner Fog
3  * Date created: 2012-05-30
4  * Last modified: 2020-11-11
5  * Version: 2.01.02
6  * Project: vector class library
7  * Description:
8  * Header file for various compiler-specific tasks as well as common
9  * macros and templates. This file contains:
10  *
11  * > Selection of the supported instruction set
12  * > Defines compiler version macros
13  * > Undefines certain macros that prevent function overloading
14  * > Helper functions that depend on instruction set, compiler, or platform
15  * > Common templates for permute, blend, etc.
16  *
17  * For instructions, see vcl_manual.pdf
18  *
19  * (c) Copyright 2012-2020 Agner Fog.
20  * Apache License version 2.0 or later.
21  ******************************************************************************/
22 
23 #pragma once
24 
25 // Allow the use of floating point permute instructions on integer vectors.
26 // Some CPU's have an extra latency of 1 or 2 clock cycles for this, but
27 // it may still be faster than alternative implementations:
28 #define ALLOW_FP_PERMUTE true
29 
30 // Macro to indicate 64 bit mode
31 #if ( defined( _M_AMD64 ) || defined( _M_X64 ) || defined( __amd64 ) ) && !defined( __x86_64__ )
32 # define __x86_64__ 1 // There are many different macros for this, decide on only one
33 #endif
34 
35 // The following values of INSTRSET are currently defined:
36 // 2: SSE2
37 // 3: SSE3
38 // 4: SSSE3
39 // 5: SSE4.1
40 // 6: SSE4.2
41 // 7: AVX
42 // 8: AVX2
43 // 9: AVX512F
44 // 10: AVX512BW/DQ/VL
45 // In the future, INSTRSET = 11 may include AVX512VBMI and AVX512VBMI2, but this
46 // decision cannot be made before the market situation for CPUs with these
47 // instruction sets is known (these future instruction set extensions are already
48 // used in some VCL functions and tested with an emulator)
49 
50 // Find instruction set from compiler macros if INSTRSET is not defined.
51 // Note: Most of these macros are not defined in Microsoft compilers
52 #ifndef INSTRSET
53 # if defined( __AVX512VL__ ) && defined( __AVX512BW__ ) && defined( __AVX512DQ__ )
54 # define INSTRSET 10
55 # elif defined( __AVX512F__ ) || defined( __AVX512__ )
56 # define INSTRSET 9
57 # elif defined( __AVX2__ )
58 # define INSTRSET 8
59 # elif defined( __AVX__ )
60 # define INSTRSET 7
61 # elif defined( __SSE4_2__ )
62 # define INSTRSET 6
63 # elif defined( __SSE4_1__ )
64 # define INSTRSET 5
65 # elif defined( __SSSE3__ )
66 # define INSTRSET 4
67 # elif defined( __SSE3__ )
68 # define INSTRSET 3
69 # elif defined( __SSE2__ ) || defined( __x86_64__ )
70 # define INSTRSET 2
71 # elif defined( __SSE__ )
72 # define INSTRSET 1
73 # elif defined( _M_IX86_FP ) // Defined in MS compiler. 1: SSE, 2: SSE2
74 # define INSTRSET _M_IX86_FP
75 # else
76 # define INSTRSET 0
77 # endif // instruction set defines
78 #endif // INSTRSET
79 
80 // Include the appropriate header file for intrinsic functions
81 #if INSTRSET > 7 // AVX2 and later
82 # if defined( __GNUC__ ) && !defined( __INTEL_COMPILER )
83 # include <x86intrin.h> // x86intrin.h includes header files for whatever instruction
84  // sets are specified on the compiler command line, such as:
85  // xopintrin.h, fma4intrin.h
86 # else
87 # include <immintrin.h> // MS/Intel version of immintrin.h covers AVX and later
88 # endif // __GNUC__
89 #elif INSTRSET == 7
90 # include <immintrin.h> // AVX
91 #elif INSTRSET == 6
92 # include <nmmintrin.h> // SSE4.2
93 #elif INSTRSET == 5
94 # include <smmintrin.h> // SSE4.1
95 #elif INSTRSET == 4
96 # include <tmmintrin.h> // SSSE3
97 #elif INSTRSET == 3
98 # include <pmmintrin.h> // SSE3
99 #elif INSTRSET == 2
100 # include <emmintrin.h> // SSE2
101 #elif INSTRSET == 1
102 # include <xmmintrin.h> // SSE
103 #endif // INSTRSET
104 
105 #if INSTRSET >= 8 && !defined( __FMA__ )
106 // Assume that all processors that have AVX2 also have FMA3
107 # if defined( __GNUC__ ) && !defined( __INTEL_COMPILER )
108 // Prevent error message in g++ and Clang when using FMA intrinsics with avx2:
109 # if !defined( DISABLE_WARNING_AVX2_WITHOUT_FMA )
110 # pragma message "It is recommended to specify also option -mfma when using -mavx2 or higher"
111 # endif
112 # elif !defined( __clang__ )
113 # define __FMA__ 1
114 # endif
115 #endif
116 
117 // AMD instruction sets
118 #if defined( __XOP__ ) || defined( __FMA4__ )
119 # ifdef __GNUC__
120 # include <x86intrin.h> // AMD XOP (Gnu)
121 # else
122 # include <ammintrin.h> // AMD XOP (Microsoft)
123 # endif // __GNUC__
124 #elif defined( __SSE4A__ ) // AMD SSE4A
125 # include <ammintrin.h>
126 #endif // __XOP__
127 
128 // FMA3 instruction set
129 #if defined( __FMA__ ) && ( defined( __GNUC__ ) || defined( __clang__ ) ) && !defined( __INTEL_COMPILER )
130 # include <fmaintrin.h>
131 #endif // __FMA__
132 
133 // FMA4 instruction set
134 #if defined( __FMA4__ ) && ( defined( __GNUC__ ) || defined( __clang__ ) )
135 # include <fma4intrin.h> // must have both x86intrin.h and fma4intrin.h, don't know why
136 #endif // __FMA4__
137 
138 #include <stdint.h> // Define integer types with known size
139 #include <stdlib.h> // define abs(int)
140 
141 #ifdef _MSC_VER // Microsoft compiler or compatible Intel compiler
142 # include <intrin.h> // define _BitScanReverse(int), __cpuid(int[4],int), _xgetbv(int)
143 #endif // _MSC_VER
144 
145 // functions in instrset_detect.cpp:
146 #ifdef VCL_NAMESPACE
147 namespace VCL_NAMESPACE {
148 #endif
149  int instrset_detect( void ); // tells which instruction sets are supported
150  bool hasFMA3( void ); // true if FMA3 instructions supported
151  bool hasFMA4( void ); // true if FMA4 instructions supported
152  bool hasXOP( void ); // true if XOP instructions supported
153  bool hasAVX512ER( void ); // true if AVX512ER instructions supported
154  bool hasAVX512VBMI( void ); // true if AVX512VBMI instructions supported
155  bool hasAVX512VBMI2( void ); // true if AVX512VBMI2 instructions supported
156 #ifdef VCL_NAMESPACE
157 }
158 #endif
159 
160 // functions in physical_processors.cpp:
161 int physicalProcessors( int* logical_processors = 0 );
162 
163 // GCC version
164 #if defined( __GNUC__ ) && !defined( GCC_VERSION ) && !defined( __clang__ )
165 # define GCC_VERSION ( (__GNUC__)*10000 + (__GNUC_MINOR__)*100 + ( __GNUC_PATCHLEVEL__ ) )
166 #endif
167 
168 // Clang version
169 #if defined( __clang__ )
170 # define CLANG_VERSION ( (__clang_major__)*10000 + (__clang_minor__)*100 + ( __clang_patchlevel__ ) )
171 // Problem: The version number is not consistent across platforms
172 // http://llvm.org/bugs/show_bug.cgi?id=12643
173 // Apple bug 18746972
174 #endif
175 
176 // Fix problem with non-overloadable macros named min and max in WinDef.h
177 #ifdef _MSC_VER
178 # if defined( _WINDEF_ ) && defined( min ) && defined( max )
179 # undef min
180 # undef max
181 # endif
182 # ifndef NOMINMAX
183 # define NOMINMAX
184 # endif
185 #endif
186 
187 /* Intel compiler problem:
188 The Intel compiler currently cannot compile version 2.00 of VCL. It seems to have
189 a problem with constexpr function returns not being constant enough.
190 */
191 #if defined( __INTEL_COMPILER ) && __INTEL_COMPILER < 9999
192 # error The Intel compiler version 19.00 cannot compile VCL version 2. Use Version 1.xx of VCL instead
193 #endif
194 
195 /* Clang problem:
196 The Clang compiler treats the intrinsic vector types __m128, __m128i, and __m128d as identical.
197 See the bug report at https://bugs.llvm.org/show_bug.cgi?id=17164
198 Additional problem: The version number is not consistent across platforms. The Apple build has
199 different version numbers. We have to rely on __apple_build_version__ on the Mac platform:
200 http://llvm.org/bugs/show_bug.cgi?id=12643
201 We have to make switches here when - hopefully - the error some day has been fixed.
202 We need different version checks with and whithout __apple_build_version__
203 */
204 #if ( defined( __clang__ ) || defined( __apple_build_version__ ) ) && !defined( __INTEL_COMPILER )
205 # define FIX_CLANG_VECTOR_ALIAS_AMBIGUITY
206 #endif
207 
208 #if defined( GCC_VERSION ) && GCC_VERSION < 99999 && !defined( __clang__ )
209 # define ZEXT_MISSING // Gcc 7.4.0 does not have _mm256_zextsi128_si256 and similar functions
210 #endif
211 
212 #ifdef VCL_NAMESPACE
213 namespace VCL_NAMESPACE {
214 #endif
215 
216  // Constant for indicating don't care in permute and blend functions.
217  // V_DC is -256 in Vector class library version 1.xx
218  // V_DC can be any value less than -1 in Vector class library version 2.00
219  constexpr int V_DC = -256;
220 
221  /*****************************************************************************
222  *
223  * Helper functions that depend on instruction set, compiler, or platform
224  *
225  *****************************************************************************/
226 
227  // Define interface to cpuid instruction.
228  // input: functionnumber = leaf (eax), ecxleaf = subleaf(ecx)
229  // output: output[0] = eax, output[1] = ebx, output[2] = ecx, output[3] = edx
230  static inline void cpuid( int output[4], int functionnumber, int ecxleaf = 0 ) {
231 #ifdef __x86_64__
232 # if defined( __GNUC__ ) || defined( __clang__ ) // use inline assembly, Gnu/AT&T syntax
233  int a, b, c, d;
234  __asm( "cpuid" : "=a"( a ), "=b"( b ), "=c"( c ), "=d"( d ) : "a"( functionnumber ), "c"( ecxleaf ) : );
235  output[0] = a;
236  output[1] = b;
237  output[2] = c;
238  output[3] = d;
239 
240 # elif defined( _MSC_VER ) // Microsoft compiler, intrin.h included
241  __cpuidex( output, functionnumber, ecxleaf ); // intrinsic function for CPUID
242 
243 # else // unknown platform. try inline assembly with masm/intel syntax
244  __asm {
245  mov eax, functionnumber
246  mov ecx, ecxleaf
247  cpuid;
248  mov esi, output
249  mov[esi], eax
250  mov[esi + 4], ebx
251  mov[esi + 8], ecx
252  mov[esi + 12], edx
253  }
254 # endif // compiler/platform
255 #endif // __x86_64__
256  }
257 
258 // Define popcount function. Gives sum of bits
259 #if INSTRSET >= 6 // SSE4.2
260  // popcnt instruction is not officially part of the SSE4.2 instruction set,
261  // but available in all known processors with SSE4.2
262  static inline uint32_t vml_popcnt( uint32_t a ) {
263  return (uint32_t)_mm_popcnt_u32( a ); // Intel intrinsic. Supported by gcc and clang
264  }
265 # ifdef __x86_64__
266  static inline int64_t vml_popcnt( uint64_t a ) {
267  return _mm_popcnt_u64( a ); // Intel intrinsic.
268  }
269 # else // 32 bit mode
270  static inline int64_t vml_popcnt( uint64_t a ) {
271  return _mm_popcnt_u32( uint32_t( a >> 32 ) ) + _mm_popcnt_u32( uint32_t( a ) );
272  }
273 # endif
274 #else // no SSE4.2
275 static inline uint32_t vml_popcnt( uint32_t a ) {
276  // popcnt instruction not available
277  uint32_t b = a - ( ( a >> 1 ) & 0x55555555 );
278  uint32_t c = ( b & 0x33333333 ) + ( ( b >> 2 ) & 0x33333333 );
279  uint32_t d = ( c + ( c >> 4 ) ) & 0x0F0F0F0F;
280  uint32_t e = d * 0x01010101;
281  return e >> 24;
282 }
283 
284 static inline int32_t vml_popcnt( uint64_t a ) {
285  return vml_popcnt( uint32_t( a >> 32 ) ) + vml_popcnt( uint32_t( a ) );
286 }
287 
288 #endif
289 
290 // Define bit-scan-forward function. Gives index to lowest set bit
291 #if defined( __GNUC__ ) || defined( __clang__ )
292  // gcc and Clang have no bit_scan_forward intrinsic
293 # if defined( __clang__ ) // fix clang bug
294  // Clang uses a k register as parameter a when inlined from horizontal_find_first
295  __attribute__( ( noinline ) )
296 # endif
297  static uint32_t
298  bit_scan_forward( uint32_t a ) {
299  uint32_t r;
300  __asm( "bsfl %1, %0" : "=r"( r ) : "r"( a ) : );
301  return r;
302  }
303  static inline uint32_t bit_scan_forward( uint64_t a ) {
304  uint32_t lo = uint32_t( a );
305  if ( lo ) return bit_scan_forward( lo );
306  uint32_t hi = uint32_t( a >> 32 );
307  return bit_scan_forward( hi ) + 32;
308  }
309 
310 #else // other compilers
311 static inline uint32_t bit_scan_forward( uint32_t a ) {
312  unsigned long r;
313  _BitScanForward( &r, a ); // defined in intrin.h for MS and Intel compilers
314  return r;
315 }
316 # ifdef __x86_64__
317 static inline uint32_t bit_scan_forward( uint64_t a ) {
318  unsigned long r;
319  _BitScanForward64( &r, a ); // defined in intrin.h for MS and Intel compilers
320  return (uint32_t)r;
321 }
322 # else
323 static inline uint32_t bit_scan_forward( uint64_t a ) {
324  uint32_t lo = uint32_t( a );
325  if ( lo ) return bit_scan_forward( lo );
326  uint32_t hi = uint32_t( a >> 32 );
327  return bit_scan_forward( hi ) + 32;
328 }
329 # endif
330 #endif
331 
332 // Define bit-scan-reverse function. Gives index to highest set bit = floor(log2(a))
333 #if defined( __GNUC__ ) || defined( __clang__ )
334  static inline uint32_t bit_scan_reverse( uint32_t a ) __attribute__( ( pure ) );
335  static inline uint32_t bit_scan_reverse( uint32_t a ) {
336  uint32_t r;
337  __asm( "bsrl %1, %0" : "=r"( r ) : "r"( a ) : );
338  return r;
339  }
340 # ifdef __x86_64__
341  static inline uint32_t bit_scan_reverse( uint64_t a ) {
342  uint64_t r;
343  __asm( "bsrq %1, %0" : "=r"( r ) : "r"( a ) : );
344  return r;
345  }
346 # else // 32 bit mode
347  static inline uint32_t bit_scan_reverse( uint64_t a ) {
348  uint64_t ahi = a >> 32;
349  if ( ahi == 0 )
350  return bit_scan_reverse( uint32_t( a ) );
351  else
352  return bit_scan_reverse( uint32_t( ahi ) ) + 32;
353  }
354 # endif
355 #else
356 static inline uint32_t bit_scan_reverse( uint32_t a ) {
357  unsigned long r;
358  _BitScanReverse( &r, a ); // defined in intrin.h for MS and Intel compilers
359  return r;
360 }
361 # ifdef __x86_64__
362 static inline uint32_t bit_scan_reverse( uint64_t a ) {
363  unsigned long r;
364  _BitScanReverse64( &r, a ); // defined in intrin.h for MS and Intel compilers
365  return r;
366 }
367 # else // 32 bit mode
368 static inline uint32_t bit_scan_reverse( uint64_t a ) {
369  uint64_t ahi = a >> 32;
370  if ( ahi == 0 )
371  return bit_scan_reverse( uint32_t( a ) );
372  else
373  return bit_scan_reverse( uint32_t( ahi ) ) + 32;
374 }
375 # endif
376 #endif
377 
378  // Same function, for compile-time constants
379  constexpr int bit_scan_reverse_const( uint64_t const n ) {
380  if ( n == 0 ) return -1;
381  uint64_t a = n, b = 0, j = 64, k = 0;
382  do {
383  j >>= 1;
384  k = (uint64_t)1 << j;
385  if ( a >= k ) {
386  a >>= j;
387  b += j;
388  }
389  } while ( j > 0 );
390  return int( b );
391  }
392 
393  /*****************************************************************************
394  *
395  * Common templates
396  *
397  *****************************************************************************/
398 
399  // Template class to represent compile-time integer constant
400  template <int32_t n>
401  class Const_int_t {}; // represent compile-time signed integer constant
402  template <uint32_t n>
403  class Const_uint_t {}; // represent compile-time unsigned integer constant
404 #define const_int( n ) ( Const_int_t<n>() ) // n must be compile-time integer constant
405 #define const_uint( n ) ( Const_uint_t<n>() ) // n must be compile-time unsigned integer constant
406 
407  // template for producing quiet NAN
408  template <class VTYPE>
409  static inline VTYPE nan_vec( uint32_t payload = 0x100 ) {
410  if constexpr ( ( VTYPE::elementtype() & 1 ) != 0 ) { // double
411  union {
412  uint64_t q;
413  double f;
414  } ud;
415  // n is left justified to avoid loss of NAN payload when converting to float
416  ud.q = 0x7FF8000000000000 | uint64_t( payload ) << 29;
417  return VTYPE( ud.f );
418  }
419  // float will be converted to double if necessary
420  union {
421  uint32_t i;
422  float f;
423  } uf;
424  uf.i = 0x7FC00000 | ( payload & 0x003FFFFF );
425  return VTYPE( uf.f );
426  }
427 
428  // Test if a parameter is a compile-time constant
429  /* Unfortunately, this works only for macro parameters, not for inline function parameters.
430  I hope that some solution will appear in the future, but for now it appears to be
431  impossible to check if a function parameter is a compile-time constant.
432  This would be useful in operator / and in function pow:
433  #if defined(__GNUC__) || defined (__clang__)
434  #define is_constant(a) __builtin_constant_p(a)
435  #else
436  #define is_constant(a) false
437  #endif
438  */
439 
440  /*****************************************************************************
441  *
442  * Helper functions for permute and blend functions
443  *
444  ******************************************************************************
445  Rules for constexpr functions:
446 
447  > All variable declarations must include initialization
448 
449  > Do not put variable declarations inside a for-clause, e.g. avoid: for (int i=0; ..
450  Instead, you have to declare the loop counter before the for-loop.
451 
452  > Do not make constexpr functions that return vector types. This requires type
453  punning with a union, which is not allowed in constexpr functions under C++17.
454  It may be possible under C++20
455 
456  *****************************************************************************/
457 
458  // Define type for Encapsulated array to use as return type:
459  template <typename T, int N>
460  struct EList {
461  T a[N];
462  };
463 
464  // get_inttype: get an integer of a size that matches the element size
465  // of vector class V with the value -1
466  template <typename V>
467  constexpr auto get_inttype() {
468  constexpr int elementsize = sizeof( V ) / V::size(); // size of vector elements
469 
470  if constexpr ( elementsize >= 8 ) {
471  return -int64_t( 1 );
472  } else if constexpr ( elementsize >= 4 ) {
473  return int32_t( -1 );
474  } else if constexpr ( elementsize >= 2 ) {
475  return int16_t( -1 );
476  } else {
477  return int8_t( -1 );
478  }
479  }
480 
481  // zero_mask: return a compact bit mask mask for zeroing using AVX512 mask.
482  // Parameter a is a reference to a constexpr int array of permutation indexes
483  template <int N>
484  constexpr auto zero_mask( int const ( &a )[N] ) {
485  uint64_t mask = 0;
486  int i = 0;
487 
488  for ( i = 0; i < N; i++ ) {
489  if ( a[i] >= 0 ) mask |= uint64_t( 1 ) << i;
490  }
491  if constexpr ( N <= 8 )
492  return uint8_t( mask );
493  else if constexpr ( N <= 16 )
494  return uint16_t( mask );
495  else if constexpr ( N <= 32 )
496  return uint32_t( mask );
497  else
498  return mask;
499  }
500 
501  // zero_mask_broad: return a broad byte mask for zeroing.
502  // Parameter a is a reference to a constexpr int array of permutation indexes
503  template <typename V>
504  constexpr auto zero_mask_broad( int const ( &A )[V::size()] ) {
505  constexpr int N = V::size(); // number of vector elements
506  typedef decltype( get_inttype<V>() ) Etype; // element type
507  EList<Etype, N> u = { { 0 } }; // list for return
508  int i = 0;
509  for ( i = 0; i < N; i++ ) { u.a[i] = A[i] >= 0 ? get_inttype<V>() : 0; }
510  return u; // return encapsulated array
511  }
512 
513  // make_bit_mask: return a compact mask of bits from a list of N indexes:
514  // B contains options indicating how to gather the mask
515  // bit 0-7 in B indicates which bit in each index to collect
516  // bit 8 = 0x100: set 1 in the lower half of the bit mask if the indicated bit is 1.
517  // bit 8 = 0 : set 1 in the lower half of the bit mask if the indicated bit is 0.
518  // bit 9 = 0x200: set 1 in the upper half of the bit mask if the indicated bit is 1.
519  // bit 9 = 0 : set 1 in the upper half of the bit mask if the indicated bit is 0.
520  // bit 10 = 0x400: set 1 in the bit mask if the corresponding index is -1 or V_DC
521  // Parameter a is a reference to a constexpr int array of permutation indexes
522  template <int N, int B>
523  constexpr uint64_t make_bit_mask( int const ( &a )[N] ) {
524  uint64_t r = 0; // return value
525  uint8_t j = uint8_t( B & 0xFF ); // index to selected bit
526  uint64_t s = 0; // bit number i in r
527  uint64_t f = 0; // 1 if bit not flipped
528  int i = 0;
529  for ( i = 0; i < N; i++ ) {
530  int ix = a[i];
531  if ( ix < 0 ) { // -1 or V_DC
532  s = ( B >> 10 ) & 1;
533  } else {
534  s = ( (uint32_t)ix >> j ) & 1; // extract selected bit
535  if ( i < N / 2 ) {
536  f = ( B >> 8 ) & 1; // lower half
537  } else {
538  f = ( B >> 9 ) & 1; // upper half
539  }
540  s ^= f ^ 1; // flip bit if needed
541  }
542  r |= uint64_t( s ) << i; // set bit in return value
543  }
544  return r;
545  }
546 
547  // make_broad_mask: Convert a bit mask m to a broad mask
548  // The return value will be a broad boolean mask with elementsize matching vector class V
549  template <typename V>
550  constexpr auto make_broad_mask( uint64_t const m ) {
551  constexpr int N = V::size(); // number of vector elements
552  typedef decltype( get_inttype<V>() ) Etype; // element type
553  EList<Etype, N> u = { { 0 } }; // list for returning
554  int i = 0;
555  for ( i = 0; i < N; i++ ) { u.a[i] = ( ( m >> i ) & 1 ) != 0 ? get_inttype<V>() : 0; }
556  return u; // return encapsulated array
557  }
558 
559  // perm_mask_broad: return a mask for permutation by a vector register index.
560  // Parameter A is a reference to a constexpr int array of permutation indexes
561  template <typename V>
562  constexpr auto perm_mask_broad( int const ( &A )[V::size()] ) {
563  constexpr int N = V::size(); // number of vector elements
564  typedef decltype( get_inttype<V>() ) Etype; // vector element type
565  EList<Etype, N> u = { { 0 } }; // list for returning
566  int i = 0;
567  for ( i = 0; i < N; i++ ) { u.a[i] = Etype( A[i] ); }
568  return u; // return encapsulated array
569  }
570 
571  // perm_flags: returns information about how a permute can be implemented.
572  // The return value is composed of these flag bits:
573  const int perm_zeroing = 1; // needs zeroing
574  const int perm_perm = 2; // permutation needed
575  const int perm_allzero = 4; // all is zero or don't care
576  const int perm_largeblock = 8; // fits permute with a larger block size (e.g permute Vec2q instead of Vec4i)
577  const int perm_addz = 0x10; // additional zeroing needed after permute with larger block size or shift
578  const int perm_addz2 = 0x20; // additional zeroing needed after perm_zext, perm_compress, or perm_expand
579  const int perm_cross_lane = 0x40; // permutation crossing 128-bit lanes
580  const int perm_same_pattern = 0x80; // same permute pattern in all 128-bit lanes
581  const int perm_punpckh = 0x100; // permutation pattern fits punpckh instruction
582  const int perm_punpckl = 0x200; // permutation pattern fits punpckl instruction
583  const int perm_rotate =
584  0x400; // permutation pattern fits rotation within lanes. 4 bit count returned in bit perm_rot_count
585  const int perm_shright =
586  0x1000; // permutation pattern fits shift right within lanes. 4 bit count returned in bit perm_rot_count
587  const int perm_shleft =
588  0x2000; // permutation pattern fits shift left within lanes. negative count returned in bit perm_rot_count
589  const int perm_rotate_big =
590  0x4000; // permutation pattern fits rotation across lanes. 6 bit count returned in bit perm_rot_count
591  const int perm_broadcast = 0x8000; // permutation pattern fits broadcast of a single element.
592  const int perm_zext = 0x10000; // permutation pattern fits zero extension
593  const int perm_compress = 0x20000; // permutation pattern fits vpcompress instruction
594  const int perm_expand = 0x40000; // permutation pattern fits vpexpand instruction
595  const int perm_outofrange = 0x10000000; // index out of range
596  const int perm_rot_count = 32; // rotate or shift count is in bits perm_rot_count to perm_rot_count+3
597  const int perm_ipattern =
598  40; // pattern for pshufd is in bit perm_ipattern to perm_ipattern + 7 if perm_same_pattern and elementsize >= 4
599 
600  template <typename V>
601  constexpr uint64_t perm_flags( int const ( &a )[V::size()] ) {
602  // a is a reference to a constexpr array of permutation indexes
603  // V is a vector class
604  constexpr int N = V::size(); // number of elements
605  uint64_t r = perm_largeblock | perm_same_pattern | perm_allzero; // return value
606  uint32_t i = 0; // loop counter
607  int j = 0; // loop counter
608  int ix = 0; // index number i
609  const uint32_t nlanes = sizeof( V ) / 16; // number of 128-bit lanes
610  const uint32_t lanesize = N / nlanes; // elements per lane
611  const uint32_t elementsize = sizeof( V ) / N; // size of each vector element
612  uint32_t lane = 0; // current lane
613  uint32_t rot = 999; // rotate left count
614  int32_t broadc = 999; // index to broadcasted element
615  uint32_t patfail = 0; // remember certain patterns that do not fit
616  uint32_t addz2 = 0; // remember certain patterns need extra zeroing
617  int32_t compresslasti = -1; // last index in perm_compress fit
618  int32_t compresslastp = -1; // last position in perm_compress fit
619  int32_t expandlasti = -1; // last index in perm_expand fit
620  int32_t expandlastp = -1; // last position in perm_expand fit
621 
622  int lanepattern[lanesize] = { 0 }; // pattern in each lane
623 
624  for ( i = 0; i < N; i++ ) { // loop through indexes
625  ix = a[i]; // current index
626  // meaning of ix: -1 = set to zero, V_DC = don't care, non-negative value = permute.
627  if ( ix == -1 ) {
628  r |= perm_zeroing; // zeroing requested
629  } else if ( ix != V_DC && uint32_t( ix ) >= N ) {
630  r |= perm_outofrange; // index out of range
631  }
632  if ( ix >= 0 ) {
633  r &= ~perm_allzero; // not all zero
634  if ( ix != (int)i ) r |= perm_perm; // needs permutation
635  if ( broadc == 999 )
636  broadc = ix; // remember broadcast index
637  else if ( broadc != ix )
638  broadc = 1000; // does not fit broadcast
639  }
640  // check if pattern fits a larger block size:
641  // even indexes must be even, odd indexes must fit the preceding even index + 1
642  if ( ( i & 1 ) == 0 ) { // even index
643  if ( ix >= 0 && ( ix & 1 ) ) r &= ~perm_largeblock; // not even. does not fit larger block size
644  int iy = a[i + 1]; // next odd index
645  if ( iy >= 0 && ( iy & 1 ) == 0 ) r &= ~perm_largeblock; // not odd. does not fit larger block size
646  if ( ix >= 0 && iy >= 0 && iy != ix + 1 ) r &= ~perm_largeblock; // does not fit preceding index + 1
647  if ( ix == -1 && iy >= 0 ) r |= perm_addz; // needs additional zeroing at current block size
648  if ( iy == -1 && ix >= 0 ) r |= perm_addz; // needs additional zeroing at current block size
649  }
650  lane = i / lanesize; // current lane
651  if ( lane == 0 ) { // first lane, or no pattern yet
652  lanepattern[i] = ix; // save pattern
653  }
654  // check if crossing lanes
655  if ( ix >= 0 ) {
656  uint32_t lanei = (uint32_t)ix / lanesize; // source lane
657  if ( lanei != lane ) r |= perm_cross_lane; // crossing lane
658  }
659  // check if same pattern in all lanes
660  if ( lane != 0 && ix >= 0 ) { // not first lane
661  int j1 = i - int( lane * lanesize ); // index into lanepattern
662  int jx = ix - int( lane * lanesize ); // pattern within lane
663  if ( jx < 0 || jx >= (int)lanesize ) r &= ~perm_same_pattern; // source is in another lane
664  if ( lanepattern[j1] < 0 ) {
665  lanepattern[j1] = jx; // pattern not known from previous lane
666  } else {
667  if ( lanepattern[j1] != jx ) r &= ~perm_same_pattern; // not same pattern
668  }
669  }
670  if ( ix >= 0 ) {
671  // check if pattern fits zero extension (perm_zext)
672  if ( uint32_t( ix * 2 ) != i ) {
673  patfail |= 1; // does not fit zero extension
674  }
675  // check if pattern fits compress (perm_compress)
676  if ( ix > compresslasti && ix - compresslasti >= (int)i - compresslastp ) {
677  if ( (int)i - compresslastp > 1 ) addz2 |= 2; // perm_compress may need additional zeroing
678  compresslasti = ix;
679  compresslastp = i;
680  } else {
681  patfail |= 2; // does not fit perm_compress
682  }
683  // check if pattern fits expand (perm_expand)
684  if ( ix > expandlasti && ix - expandlasti <= (int)i - expandlastp ) {
685  if ( ix - expandlasti > 1 ) addz2 |= 4; // perm_expand may need additional zeroing
686  expandlasti = ix;
687  expandlastp = i;
688  } else {
689  patfail |= 4; // does not fit perm_compress
690  }
691  } else if ( ix == -1 ) {
692  if ( ( i & 1 ) == 0 ) addz2 |= 1; // zero extension needs additional zeroing
693  }
694  }
695  if ( !( r & perm_perm ) ) return r; // more checks are superfluous
696 
697  if ( !( r & perm_largeblock ) ) r &= ~perm_addz; // remove irrelevant flag
698  if ( r & perm_cross_lane ) r &= ~perm_same_pattern; // remove irrelevant flag
699  if ( ( patfail & 1 ) == 0 ) {
700  r |= perm_zext; // fits zero extension
701  if ( ( addz2 & 1 ) != 0 ) r |= perm_addz2;
702  } else if ( ( patfail & 2 ) == 0 ) {
703  r |= perm_compress; // fits compression
704  if ( ( addz2 & 2 ) != 0 ) { // check if additional zeroing needed
705  for ( j = 0; j < compresslastp; j++ ) {
706  if ( a[j] == -1 ) r |= perm_addz2;
707  }
708  }
709  } else if ( ( patfail & 4 ) == 0 ) {
710  r |= perm_expand; // fits expansion
711  if ( ( addz2 & 4 ) != 0 ) { // check if additional zeroing needed
712  for ( j = 0; j < expandlastp; j++ ) {
713  if ( a[j] == -1 ) r |= perm_addz2;
714  }
715  }
716  }
717 
718  if ( r & perm_same_pattern ) {
719  // same pattern in all lanes. check if it fits specific patterns
720  bool fit = true;
721  // fit shift or rotate
722  for ( i = 0; i < lanesize; i++ ) {
723  if ( lanepattern[i] >= 0 ) {
724  uint32_t rot1 = uint32_t( lanepattern[i] + lanesize - i ) % lanesize;
725  if ( rot == 999 ) {
726  rot = rot1;
727  } else { // check if fit
728  if ( rot != rot1 ) fit = false;
729  }
730  }
731  }
732  rot &= lanesize - 1; // prevent out of range values
733  if ( fit ) { // fits rotate, and possibly shift
734  uint64_t rot2 = ( rot * elementsize ) & 0xF; // rotate right count in bytes
735  r |= rot2 << perm_rot_count; // put shift/rotate count in output bit 16-19
736 #if INSTRSET >= 4 // SSSE3
737  r |= perm_rotate; // allow palignr
738 #endif
739  // fit shift left
740  fit = true;
741  for ( i = 0; i < lanesize - rot; i++ ) { // check if first rot elements are zero or don't care
742  if ( lanepattern[i] >= 0 ) fit = false;
743  }
744  if ( fit ) {
745  r |= perm_shleft;
746  for ( ; i < lanesize; i++ )
747  if ( lanepattern[i] == -1 ) r |= perm_addz; // additional zeroing needed
748  }
749  // fit shift right
750  fit = true;
751  for ( i = lanesize - (uint32_t)rot; i < lanesize;
752  i++ ) { // check if last (lanesize-rot) elements are zero or don't care
753  if ( lanepattern[i] >= 0 ) fit = false;
754  }
755  if ( fit ) {
756  r |= perm_shright;
757  for ( i = 0; i < lanesize - rot; i++ ) {
758  if ( lanepattern[i] == -1 ) r |= perm_addz; // additional zeroing needed
759  }
760  }
761  }
762  // fit punpckhi
763  fit = true;
764  uint32_t j2 = lanesize / 2;
765  for ( i = 0; i < lanesize; i++ ) {
766  if ( lanepattern[i] >= 0 && lanepattern[i] != (int)j2 ) fit = false;
767  if ( ( i & 1 ) != 0 ) j2++;
768  }
769  if ( fit ) r |= perm_punpckh;
770  // fit punpcklo
771  fit = true;
772  j2 = 0;
773  for ( i = 0; i < lanesize; i++ ) {
774  if ( lanepattern[i] >= 0 && lanepattern[i] != (int)j2 ) fit = false;
775  if ( ( i & 1 ) != 0 ) j2++;
776  }
777  if ( fit ) r |= perm_punpckl;
778  // fit pshufd
779  if ( elementsize >= 4 ) {
780  uint64_t p = 0;
781  for ( i = 0; i < lanesize; i++ ) {
782  if ( lanesize == 4 ) {
783  p |= ( lanepattern[i] & 3 ) << 2 * i;
784  } else { // lanesize = 2
785  p |= ( ( lanepattern[i] & 1 ) * 10 + 4 ) << 4 * i;
786  }
787  }
788  r |= p << perm_ipattern;
789  }
790  }
791 #if INSTRSET >= 7
792  else { // not same pattern in all lanes
793  if constexpr ( nlanes > 1 ) { // Try if it fits big rotate
794  for ( i = 0; i < N; i++ ) {
795  ix = a[i];
796  if ( ix >= 0 ) {
797  uint32_t rot2 = ( ix + N - i ) % N; // rotate count
798  if ( rot == 999 ) {
799  rot = rot2; // save rotate count
800  } else if ( rot != rot2 ) {
801  rot = 1000;
802  break; // does not fit big rotate
803  }
804  }
805  }
806  if ( rot < N ) { // fits big rotate
807  r |= perm_rotate_big | (uint64_t)rot << perm_rot_count;
808  }
809  }
810  }
811 #endif
812  if ( broadc < 999 && ( r & ( perm_rotate | perm_shright | perm_shleft | perm_rotate_big ) ) == 0 ) {
813  r |= perm_broadcast | (uint64_t)broadc << perm_rot_count; // fits broadcast
814  }
815  return r;
816  }
817 
818  // compress_mask: returns a bit mask to use for compression instruction.
819  // It is presupposed that perm_flags indicates perm_compress.
820  // Additional zeroing is needed if perm_flags indicates perm_addz2
821  template <int N>
822  constexpr uint64_t compress_mask( int const ( &a )[N] ) {
823  // a is a reference to a constexpr array of permutation indexes
824  int ix = 0, lasti = -1, lastp = -1;
825  uint64_t m = 0;
826  int i = 0;
827  int j = 1; // loop counters
828  for ( i = 0; i < N; i++ ) {
829  ix = a[i]; // permutation index
830  if ( ix >= 0 ) {
831  m |= (uint64_t)1 << ix; // mask for compression source
832  for ( j = 1; j < i - lastp; j++ ) {
833  m |= (uint64_t)1 << ( lasti + j ); // dummy filling source
834  }
835  lastp = i;
836  lasti = ix;
837  }
838  }
839  return m;
840  }
841 
842  // expand_mask: returns a bit mask to use for expansion instruction.
843  // It is presupposed that perm_flags indicates perm_expand.
844  // Additional zeroing is needed if perm_flags indicates perm_addz2
845  template <int N>
846  constexpr uint64_t expand_mask( int const ( &a )[N] ) {
847  // a is a reference to a constexpr array of permutation indexes
848  int ix = 0, lasti = -1, lastp = -1;
849  uint64_t m = 0;
850  int i = 0;
851  int j = 1;
852  for ( i = 0; i < N; i++ ) {
853  ix = a[i]; // permutation index
854  if ( ix >= 0 ) {
855  m |= (uint64_t)1 << i; // mask for expansion destination
856  for ( j = 1; j < ix - lasti; j++ ) {
857  m |= (uint64_t)1 << ( lastp + j ); // dummy filling destination
858  }
859  lastp = i;
860  lasti = ix;
861  }
862  }
863  return m;
864  }
865 
866  // perm16_flags: returns information about how to permute a vector of 16-bit integers
867  // Note: It is presupposed that perm_flags reports perm_same_pattern
868  // The return value is composed of these bits:
869  // 1: data from low 64 bits to low 64 bits. pattern in bit 32-39
870  // 2: data from high 64 bits to high 64 bits. pattern in bit 40-47
871  // 4: data from high 64 bits to low 64 bits. pattern in bit 48-55
872  // 8: data from low 64 bits to high 64 bits. pattern in bit 56-63
873  template <typename V>
874  constexpr uint64_t perm16_flags( int const ( &a )[V::size()] ) {
875  // a is a reference to a constexpr array of permutation indexes
876  // V is a vector class
877  constexpr int N = V::size(); // number of elements
878 
879  uint64_t retval = 0; // return value
880  uint32_t pat[4] = { 0, 0, 0, 0 }; // permute patterns
881  uint32_t i = 0; // loop counter
882  int ix = 0; // index number i
883  const uint32_t lanesize = 8; // elements per lane
884  uint32_t lane = 0; // current lane
885  int lanepattern[lanesize] = { 0 }; // pattern in each lane
886 
887  for ( i = 0; i < N; i++ ) {
888  ix = a[i];
889  lane = i / lanesize; // current lane
890  if ( lane == 0 ) {
891  lanepattern[i] = ix; // save pattern
892  } else if ( ix >= 0 ) { // not first lane
893  uint32_t j = i - lane * lanesize; // index into lanepattern
894  int jx = ix - lane * lanesize; // pattern within lane
895  if ( lanepattern[j] < 0 ) {
896  lanepattern[j] = jx; // pattern not known from previous lane
897  }
898  }
899  }
900  // four patterns: low2low, high2high, high2low, low2high
901  for ( i = 0; i < 4; i++ ) {
902  // loop through low pattern
903  if ( lanepattern[i] >= 0 ) {
904  if ( lanepattern[i] < 4 ) { // low2low
905  retval |= 1;
906  pat[0] |= uint32_t( lanepattern[i] & 3 ) << ( 2 * i );
907  } else { // high2low
908  retval |= 4;
909  pat[2] |= uint32_t( lanepattern[i] & 3 ) << ( 2 * i );
910  }
911  }
912  // loop through high pattern
913  if ( lanepattern[i + 4] >= 0 ) {
914  if ( lanepattern[i + 4] < 4 ) { // low2high
915  retval |= 8;
916  pat[3] |= uint32_t( lanepattern[i + 4] & 3 ) << ( 2 * i );
917  } else { // high2high
918  retval |= 2;
919  pat[1] |= uint32_t( lanepattern[i + 4] & 3 ) << ( 2 * i );
920  }
921  }
922  }
923  // join return data
924  for ( i = 0; i < 4; i++ ) { retval |= (uint64_t)pat[i] << ( 32 + i * 8 ); }
925  return retval;
926  }
927 
928  // pshufb_mask: return a broad byte mask for permutation within lanes
929  // for use with the pshufb instruction (_mm..._shuffle_epi8).
930  // The pshufb instruction provides fast permutation and zeroing,
931  // allowing different patterns in each lane but no crossing of lane boundaries
932  template <typename V, int oppos = 0>
933  constexpr auto pshufb_mask( int const ( &A )[V::size()] ) {
934  // Parameter a is a reference to a constexpr array of permutation indexes
935  // V is a vector class
936  // oppos = 1 for data from the opposite 128-bit lane in 256-bit vectors
937  constexpr uint32_t N = V::size(); // number of vector elements
938  constexpr uint32_t elementsize = sizeof( V ) / N; // size of each vector element
939  constexpr uint32_t nlanes = sizeof( V ) / 16; // number of 128 bit lanes in vector
940  constexpr uint32_t elements_per_lane = N / nlanes; // number of vector elements per lane
941 
942  EList<int8_t, sizeof( V )> u = { { 0 } }; // list for returning
943 
944  uint32_t i = 0; // loop counters
945  uint32_t j = 0;
946  int m = 0;
947  int k = 0;
948  uint32_t lane = 0;
949 
950  for ( lane = 0; lane < nlanes; lane++ ) { // loop through lanes
951  for ( i = 0; i < elements_per_lane; i++ ) { // loop through elements in lane
952  // permutation index for element within lane
953  int8_t p = -1;
954  int ix = A[m];
955  if ( ix >= 0 ) {
956  ix ^= oppos * elements_per_lane; // flip bit if opposite lane
957  }
958  ix -= int( lane * elements_per_lane ); // index relative to lane
959  if ( ix >= 0 && ix < (int)elements_per_lane ) { // index points to desired lane
960  p = ix * elementsize;
961  }
962  for ( j = 0; j < elementsize; j++ ) { // loop through bytes in element
963  u.a[k++] = p < 0 ? -1 : p + j; // store byte permutation index
964  }
965  m++;
966  }
967  }
968  return u; // return encapsulated array
969  }
970 
971  // largeblock_perm: return indexes for replacing a permute or blend with
972  // a certain block size by a permute or blend with the double block size.
973  // Note: it is presupposed that perm_flags() indicates perm_largeblock
974  // It is required that additional zeroing is added if perm_flags() indicates perm_addz
975  template <int N>
976  constexpr EList<int, N / 2> largeblock_perm( int const ( &a )[N] ) {
977  // Parameter a is a reference to a constexpr array of permutation indexes
978  EList<int, N / 2> list = { { 0 } }; // result indexes
979  int ix = 0; // even index
980  int iy = 0; // odd index
981  int iz = 0; // combined index
982  bool fit_addz = false; // additional zeroing needed at the lower block level
983  int i = 0; // loop counter
984 
985  // check if additional zeroing is needed at current block size
986  for ( i = 0; i < N; i += 2 ) {
987  ix = a[i]; // even index
988  iy = a[i + 1]; // odd index
989  if ( ( ix == -1 && iy >= 0 ) || ( iy == -1 && ix >= 0 ) ) { fit_addz = true; }
990  }
991 
992  // loop through indexes
993  for ( i = 0; i < N; i += 2 ) {
994  ix = a[i]; // even index
995  iy = a[i + 1]; // odd index
996  if ( ix >= 0 ) {
997  iz = ix / 2; // half index
998  } else if ( iy >= 0 ) {
999  iz = iy / 2;
1000  } else {
1001  iz = ix | iy; // -1 or V_DC. -1 takes precedence
1002  if ( fit_addz ) iz = V_DC; // V_DC, because result will be zeroed later
1003  }
1004  list.a[i / 2] = iz; // save to list
1005  }
1006  return list;
1007  }
1008 
1009  // blend_flags: returns information about how a blend function can be implemented
1010  // The return value is composed of these flag bits:
1011  const int blend_zeroing = 1; // needs zeroing
1012  const int blend_allzero = 2; // all is zero or don't care
1013  const int blend_largeblock = 4; // fits blend with a larger block size (e.g permute Vec2q instead of Vec4i)
1014  const int blend_addz = 8; // additional zeroing needed after blend with larger block size or shift
1015  const int blend_a = 0x10; // has data from a
1016  const int blend_b = 0x20; // has data from b
1017  const int blend_perma = 0x40; // permutation of a needed
1018  const int blend_permb = 0x80; // permutation of b needed
1019  const int blend_cross_lane = 0x100; // permutation crossing 128-bit lanes
1020  const int blend_same_pattern = 0x200; // same permute/blend pattern in all 128-bit lanes
1021  const int blend_punpckhab = 0x1000; // pattern fits punpckh(a,b)
1022  const int blend_punpckhba = 0x2000; // pattern fits punpckh(b,a)
1023  const int blend_punpcklab = 0x4000; // pattern fits punpckl(a,b)
1024  const int blend_punpcklba = 0x8000; // pattern fits punpckl(b,a)
1025  const int blend_rotateab = 0x10000; // pattern fits palignr(a,b)
1026  const int blend_rotateba = 0x20000; // pattern fits palignr(b,a)
1027  const int blend_shufab = 0x40000; // pattern fits shufps/shufpd(a,b)
1028  const int blend_shufba = 0x80000; // pattern fits shufps/shufpd(b,a)
1029  const int blend_rotate_big = 0x100000; // pattern fits rotation across lanes. count returned in bits blend_rotpattern
1030  const int blend_outofrange = 0x10000000; // index out of range
1031  const int blend_shufpattern = 32; // pattern for shufps/shufpd is in bit blend_shufpattern to blend_shufpattern + 7
1032  const int blend_rotpattern = 40; // pattern for palignr is in bit blend_rotpattern to blend_rotpattern + 7
1033 
1034  template <typename V>
1035  constexpr uint64_t blend_flags( int const ( &a )[V::size()] ) {
1036  // a is a reference to a constexpr array of permutation indexes
1037  // V is a vector class
1038  constexpr int N = V::size(); // number of elements
1039  uint64_t r = blend_largeblock | blend_same_pattern | blend_allzero; // return value
1040  uint32_t iu = 0; // loop counter
1041  int32_t ii = 0; // loop counter
1042  int ix = 0; // index number i
1043  const uint32_t nlanes = sizeof( V ) / 16; // number of 128-bit lanes
1044  const uint32_t lanesize = N / nlanes; // elements per lane
1045  uint32_t lane = 0; // current lane
1046  uint32_t rot = 999; // rotate left count
1047  int lanepattern[lanesize] = { 0 }; // pattern in each lane
1048  if ( lanesize == 2 && N <= 8 ) {
1049  r |= blend_shufab | blend_shufba; // check if it fits shufpd
1050  }
1051 
1052  for ( ii = 0; ii < N; ii++ ) { // loop through indexes
1053  ix = a[ii]; // index
1054  if ( ix < 0 ) {
1055  if ( ix == -1 )
1056  r |= blend_zeroing; // set to zero
1057  else if ( ix != V_DC ) {
1058  r = blend_outofrange;
1059  break; // illegal index
1060  }
1061  } else { // ix >= 0
1062  r &= ~blend_allzero;
1063  if ( ix < N ) {
1064  r |= blend_a; // data from a
1065  if ( ix != ii ) r |= blend_perma; // permutation of a
1066  } else if ( ix < 2 * N ) {
1067  r |= blend_b; // data from b
1068  if ( ix != ii + N ) r |= blend_permb; // permutation of b
1069  } else {
1070  r = blend_outofrange;
1071  break; // illegal index
1072  }
1073  }
1074  // check if pattern fits a larger block size:
1075  // even indexes must be even, odd indexes must fit the preceding even index + 1
1076  if ( ( ii & 1 ) == 0 ) { // even index
1077  if ( ix >= 0 && ( ix & 1 ) ) r &= ~blend_largeblock; // not even. does not fit larger block size
1078  int iy = a[ii + 1]; // next odd index
1079  if ( iy >= 0 && ( iy & 1 ) == 0 ) r &= ~blend_largeblock; // not odd. does not fit larger block size
1080  if ( ix >= 0 && iy >= 0 && iy != ix + 1 ) r &= ~blend_largeblock; // does not fit preceding index + 1
1081  if ( ix == -1 && iy >= 0 ) r |= blend_addz; // needs additional zeroing at current block size
1082  if ( iy == -1 && ix >= 0 ) r |= blend_addz; // needs additional zeroing at current block size
1083  }
1084  lane = (uint32_t)ii / lanesize; // current lane
1085  if ( lane == 0 ) { // first lane, or no pattern yet
1086  lanepattern[ii] = ix; // save pattern
1087  }
1088  // check if crossing lanes
1089  if ( ix >= 0 ) {
1090  uint32_t lanei = uint32_t( ix & ~N ) / lanesize; // source lane
1091  if ( lanei != lane ) {
1092  r |= blend_cross_lane; // crossing lane
1093  }
1094  if ( lanesize == 2 ) { // check if it fits pshufd
1095  if ( lanei != lane ) r &= ~( blend_shufab | blend_shufba );
1096  if ( ( ( ( ix & N ) != 0 ) ^ ii ) & 1 )
1097  r &= ~blend_shufab;
1098  else
1099  r &= ~blend_shufba;
1100  }
1101  }
1102  // check if same pattern in all lanes
1103  if ( lane != 0 && ix >= 0 ) { // not first lane
1104  int j = ii - int( lane * lanesize ); // index into lanepattern
1105  int jx = ix - int( lane * lanesize ); // pattern within lane
1106  if ( jx < 0 || ( jx & ~N ) >= (int)lanesize ) r &= ~blend_same_pattern; // source is in another lane
1107  if ( lanepattern[j] < 0 ) {
1108  lanepattern[j] = jx; // pattern not known from previous lane
1109  } else {
1110  if ( lanepattern[j] != jx ) r &= ~blend_same_pattern; // not same pattern
1111  }
1112  }
1113  }
1114  if ( !( r & blend_largeblock ) ) r &= ~blend_addz; // remove irrelevant flag
1115  if ( r & blend_cross_lane ) r &= ~blend_same_pattern; // remove irrelevant flag
1116  if ( !( r & ( blend_perma | blend_permb ) ) ) {
1117  return r; // no permutation. more checks are superfluous
1118  }
1119  if ( r & blend_same_pattern ) {
1120  // same pattern in all lanes. check if it fits unpack patterns
1122  for ( iu = 0; iu < lanesize; iu++ ) { // loop through lanepattern
1123  ix = lanepattern[iu];
1124  if ( ix >= 0 ) {
1125  if ( (uint32_t)ix != iu / 2 + ( iu & 1 ) * N ) r &= ~blend_punpcklab;
1126  if ( (uint32_t)ix != iu / 2 + ( ( iu & 1 ) ^ 1 ) * N ) r &= ~blend_punpcklba;
1127  if ( (uint32_t)ix != ( iu + lanesize ) / 2 + ( iu & 1 ) * N ) r &= ~blend_punpckhab;
1128  if ( (uint32_t)ix != ( iu + lanesize ) / 2 + ( ( iu & 1 ) ^ 1 ) * N ) r &= ~blend_punpckhba;
1129  }
1130  }
1131 #if INSTRSET >= 4 // SSSE3. check if it fits palignr
1132  for ( iu = 0; iu < lanesize; iu++ ) {
1133  ix = lanepattern[iu];
1134  if ( ix >= 0 ) {
1135  uint32_t t = ix & ~N;
1136  if ( ix & N ) t += lanesize;
1137  uint32_t tb = ( t + 2 * lanesize - iu ) % ( lanesize * 2 );
1138  if ( rot == 999 ) {
1139  rot = tb;
1140  } else { // check if fit
1141  if ( rot != tb ) rot = 1000;
1142  }
1143  }
1144  }
1145  if ( rot < 999 ) { // firs palignr
1146  if ( rot < lanesize ) {
1147  r |= blend_rotateba;
1148  } else {
1149  r |= blend_rotateab;
1150  }
1151  const uint32_t elementsize = sizeof( V ) / N;
1152  r |= uint64_t( ( rot & ( lanesize - 1 ) ) * elementsize ) << blend_rotpattern;
1153  }
1154 #endif
1155  if ( lanesize == 4 ) {
1156  // check if it fits shufps
1157  r |= blend_shufab | blend_shufba;
1158  for ( ii = 0; ii < 2; ii++ ) {
1159  ix = lanepattern[ii];
1160  if ( ix >= 0 ) {
1161  if ( ix & N )
1162  r &= ~blend_shufab;
1163  else
1164  r &= ~blend_shufba;
1165  }
1166  }
1167  for ( ; ii < 4; ii++ ) {
1168  ix = lanepattern[ii];
1169  if ( ix >= 0 ) {
1170  if ( ix & N )
1171  r &= ~blend_shufba;
1172  else
1173  r &= ~blend_shufab;
1174  }
1175  }
1176  if ( r & ( blend_shufab | blend_shufba ) ) { // fits shufps/shufpd
1177  uint8_t shufpattern = 0; // get pattern
1178  for ( iu = 0; iu < lanesize; iu++ ) { shufpattern |= ( lanepattern[iu] & 3 ) << iu * 2; }
1179  r |= (uint64_t)shufpattern << blend_shufpattern; // return pattern
1180  }
1181  }
1182  } else if ( nlanes > 1 ) { // not same pattern in all lanes
1183  rot = 999; // check if it fits big rotate
1184  for ( ii = 0; ii < N; ii++ ) {
1185  ix = a[ii];
1186  if ( ix >= 0 ) {
1187  uint32_t rot2 = ( ix + 2 * N - ii ) % ( 2 * N ); // rotate count
1188  if ( rot == 999 ) {
1189  rot = rot2; // save rotate count
1190  } else if ( rot != rot2 ) {
1191  rot = 1000;
1192  break; // does not fit big rotate
1193  }
1194  }
1195  }
1196  if ( rot < 2 * N ) { // fits big rotate
1197  r |= blend_rotate_big | (uint64_t)rot << blend_rotpattern;
1198  }
1199  }
1200  if ( lanesize == 2 && ( r & ( blend_shufab | blend_shufba ) ) ) { // fits shufpd. Get pattern
1201  for ( ii = 0; ii < N; ii++ ) { r |= uint64_t( a[ii] & 1 ) << ( blend_shufpattern + ii ); }
1202  }
1203  return r;
1204  }
1205 
1206  // blend_perm_indexes: return an Indexlist for implementing a blend function as
1207  // two permutations. N = vector size.
1208  // dozero = 0: let unused elements be don't care. The two permutation results must be blended
1209  // dozero = 1: zero unused elements in each permuation. The two permutation results can be OR'ed
1210  // dozero = 2: indexes that are -1 or V_DC are preserved
1211  template <int N, int dozero>
1212  constexpr EList<int, 2 * N> blend_perm_indexes( int const ( &a )[N] ) {
1213  // a is a reference to a constexpr array of permutation indexes
1214  EList<int, 2 * N> list = { { 0 } }; // list to return
1215  int u = dozero ? -1 : V_DC; // value to use for unused entries
1216  int j = 0;
1217 
1218  for ( j = 0; j < N; j++ ) { // loop through indexes
1219  int ix = a[j]; // current index
1220  if ( ix < 0 ) { // zero or don't care
1221  if ( dozero == 2 ) {
1222  // list.a[j] = list.a[j + N] = ix; // fails in gcc in complicated cases
1223  list.a[j] = ix;
1224  list.a[j + N] = ix;
1225  } else {
1226  // list.a[j] = list.a[j + N] = u;
1227  list.a[j] = u;
1228  list.a[j + N] = u;
1229  }
1230  } else if ( ix < N ) { // value from a
1231  list.a[j] = ix;
1232  list.a[j + N] = u;
1233  } else {
1234  list.a[j] = u; // value from b
1235  list.a[j + N] = ix - N;
1236  }
1237  }
1238  return list;
1239  }
1240 
1241  // largeblock_indexes: return indexes for replacing a permute or blend with a
1242  // certain block size by a permute or blend with the double block size.
1243  // Note: it is presupposed that perm_flags or blend_flags indicates _largeblock
1244  // It is required that additional zeroing is added if perm_flags or blend_flags
1245  // indicates _addz
1246  template <int N>
1247  constexpr EList<int, N / 2> largeblock_indexes( int const ( &a )[N] ) {
1248  // Parameter a is a reference to a constexpr array of N permutation indexes
1249  EList<int, N / 2> list = { { 0 } }; // list to return
1250 
1251  bool fit_addz = false; // additional zeroing needed at the lower block level
1252  int ix = 0; // even index
1253  int iy = 0; // odd index
1254  int iz = 0; // combined index
1255  int i = 0; // loop counter
1256 
1257  for ( i = 0; i < N; i += 2 ) {
1258  ix = a[i]; // even index
1259  iy = a[i + 1]; // odd index
1260  if ( ix >= 0 ) {
1261  iz = ix / 2; // half index
1262  } else if ( iy >= 0 ) {
1263  iz = iy / 2; // half index
1264  } else
1265  iz = ix | iy; // -1 or V_DC. -1 takes precedence
1266  list.a[i / 2] = iz; // save to list
1267  // check if additional zeroing is needed at current block size
1268  if ( ( ix == -1 && iy >= 0 ) || ( iy == -1 && ix >= 0 ) ) { fit_addz = true; }
1269  }
1270  // replace -1 by V_DC if fit_addz
1271  if ( fit_addz ) {
1272  for ( i = 0; i < N / 2; i++ ) {
1273  if ( list.a[i] < 0 ) list.a[i] = V_DC;
1274  }
1275  }
1276  return list;
1277  }
1278 
1279  /****************************************************************************************
1280  *
1281  * Vector blend helper function templates
1282  *
1283  * These templates are for emulating a blend with a vector size that is not supported by
1284  * the instruction set, using multiple blends or permutations of half the vector size
1285  *
1286  ****************************************************************************************/
1287 
1288  // Make dummy blend function templates to avoid error messages when the blend funtions are not yet defined
1289  template <typename dummy>
1290  void blend2() {}
1291  template <typename dummy>
1292  void blend4() {}
1293  template <typename dummy>
1294  void blend8() {}
1295  template <typename dummy>
1296  void blend16() {}
1297  template <typename dummy>
1298  void blend32() {}
1299 
1300  // blend_half_indexes: return an Indexlist for emulating a blend function as
1301  // blends or permutations from multiple sources
1302  // dozero = 0: let unused elements be don't care. Multiple permutation results must be blended
1303  // dozero = 1: zero unused elements in each permuation. Multiple permutation results can be OR'ed
1304  // dozero = 2: indexes that are -1 or V_DC are preserved
1305  // src1, src2: sources to blend in a partial implementation
1306  template <int N, int dozero, int src1, int src2>
1307  constexpr EList<int, N> blend_half_indexes( int const ( &a )[N] ) {
1308  // a is a reference to a constexpr array of permutation indexes
1309  EList<int, N> list = { { 0 } }; // list to return
1310  int u = dozero ? -1 : V_DC; // value to use for unused entries
1311  int j = 0; // loop counter
1312 
1313  for ( j = 0; j < N; j++ ) { // loop through indexes
1314  int ix = a[j]; // current index
1315  if ( ix < 0 ) { // zero or don't care
1316  list.a[j] = ( dozero == 2 ) ? ix : u;
1317  } else {
1318  int src = ix / N; // source
1319  if ( src == src1 ) {
1320  list.a[j] = ix & ( N - 1 );
1321  } else if ( src == src2 ) {
1322  list.a[j] = ( ix & ( N - 1 ) ) + N;
1323  } else
1324  list.a[j] = u;
1325  }
1326  }
1327  return list;
1328  }
1329 
1330  // selectblend: select one of four sources for blending
1331  template <typename W, int s>
1332  static inline auto selectblend( W const a, W const b ) {
1333  if constexpr ( s == 0 )
1334  return a.get_low();
1335  else if constexpr ( s == 1 )
1336  return a.get_high();
1337  else if constexpr ( s == 2 )
1338  return b.get_low();
1339  else
1340  return b.get_high();
1341  }
1342 
1343  // blend_half: Emulate a blend with a vector size that is not supported
1344  // by multiple blends with half the vector size.
1345  // blend_half is called twice, to give the low and high half of the result
1346  // Parameters: W: type of full-size vector
1347  // i0...: indexes for low or high half
1348  // a, b: full size input vectors
1349  // return value: half-size vector for lower or upper part
1350  template <typename W, int... i0>
1351  auto blend_half( W const& a, W const& b ) {
1352  typedef decltype( a.get_low() ) V; // type for half-size vector
1353  constexpr int N = V::size(); // size of half-size vector
1354  static_assert( sizeof...( i0 ) == N, "wrong number of indexes in blend_half" );
1355  constexpr int ind[N] = { i0... }; // array of indexes
1356 
1357  // lambda to find which of the four possible sources are used
1358  // return: EList<int, 5> containing a list of up to 4 sources. The last element is the number of sources used
1359  auto listsources = []( int const n, int const( &ind )[N] ) constexpr {
1360  bool source_used[4] = { false, false, false, false }; // list of sources used
1361  int i = 0;
1362  for ( i = 0; i < n; i++ ) {
1363  int ix = ind[i]; // index
1364  if ( ix >= 0 ) {
1365  int src = ix / n; // source used
1366  source_used[src & 3] = true;
1367  }
1368  }
1369  // return a list of sources used. The last element is the number of sources used
1370  EList<int, 5> sources = { { 0 } };
1371  int nsrc = 0; // number of sources
1372  for ( i = 0; i < 4; i++ ) {
1373  if ( source_used[i] ) { sources.a[nsrc++] = i; }
1374  }
1375  sources.a[4] = nsrc;
1376  return sources;
1377  };
1378  // list of sources used
1379  constexpr EList<int, 5> sources = listsources( N, ind );
1380  constexpr int nsrc = sources.a[4]; // number of sources used
1381 
1382  if constexpr ( nsrc == 0 ) { // no sources
1383  return V( 0 );
1384  }
1385  // get indexes for the first one or two sources
1386  constexpr int uindex = ( nsrc > 2 ) ? 1 : 2; // unused elements set to zero if two blends are combined
1387  constexpr EList<int, N> L = blend_half_indexes<N, uindex, sources.a[0], sources.a[1]>( ind );
1388  V x0;
1389  V src0 = selectblend<W, sources.a[0]>( a, b ); // first source
1390  V src1 = selectblend<W, sources.a[1]>( a, b ); // second source
1391  if constexpr ( N == 2 ) {
1392  x0 = blend2<L.a[0], L.a[1]>( src0, src1 );
1393  } else if constexpr ( N == 4 ) {
1394  x0 = blend4<L.a[0], L.a[1], L.a[2], L.a[3]>( src0, src1 );
1395  } else if constexpr ( N == 8 ) {
1396  x0 = blend8<L.a[0], L.a[1], L.a[2], L.a[3], L.a[4], L.a[5], L.a[6], L.a[7]>( src0, src1 );
1397  } else if constexpr ( N == 16 ) {
1398  x0 = blend16<L.a[0], L.a[1], L.a[2], L.a[3], L.a[4], L.a[5], L.a[6], L.a[7], L.a[8], L.a[9], L.a[10], L.a[11],
1399  L.a[12], L.a[13], L.a[14], L.a[15]>( src0, src1 );
1400  } else if constexpr ( N == 32 ) {
1401  x0 = blend32<L.a[0], L.a[1], L.a[2], L.a[3], L.a[4], L.a[5], L.a[6], L.a[7], L.a[8], L.a[9], L.a[10], L.a[11],
1402  L.a[12], L.a[13], L.a[14], L.a[15], L.a[16], L.a[17], L.a[18], L.a[19], L.a[20], L.a[21], L.a[22],
1403  L.a[23], L.a[24], L.a[25], L.a[26], L.a[27], L.a[28], L.a[29], L.a[30], L.a[31]>( src0, src1 );
1404  }
1405  if constexpr ( nsrc > 2 ) { // get last one or two sources
1406  constexpr EList<int, N> M = blend_half_indexes<N, 1, sources.a[2], sources.a[3]>( ind );
1407  V x1;
1408  V src2 = selectblend<W, sources.a[2]>( a, b ); // third source
1409  V src3 = selectblend<W, sources.a[3]>( a, b ); // fourth source
1410  if constexpr ( N == 2 ) {
1411  x1 = blend2<M.a[0], M.a[1]>( src0, src1 );
1412  } else if constexpr ( N == 4 ) {
1413  x1 = blend4<M.a[0], M.a[1], M.a[2], M.a[3]>( src2, src3 );
1414  } else if constexpr ( N == 8 ) {
1415  x1 = blend8<M.a[0], M.a[1], M.a[2], M.a[3], M.a[4], M.a[5], M.a[6], M.a[7]>( src2, src3 );
1416  } else if constexpr ( N == 16 ) {
1417  x1 = blend16<M.a[0], M.a[1], M.a[2], M.a[3], M.a[4], M.a[5], M.a[6], M.a[7], M.a[8], M.a[9], M.a[10], M.a[11],
1418  M.a[12], M.a[13], M.a[14], M.a[15]>( src2, src3 );
1419  } else if constexpr ( N == 32 ) {
1420  x1 = blend32<M.a[0], M.a[1], M.a[2], M.a[3], M.a[4], M.a[5], M.a[6], M.a[7], M.a[8], M.a[9], M.a[10], M.a[11],
1421  M.a[12], M.a[13], M.a[14], M.a[15], M.a[16], M.a[17], M.a[18], M.a[19], M.a[20], M.a[21], M.a[22],
1422  M.a[23], M.a[24], M.a[25], M.a[26], M.a[27], M.a[28], M.a[29], M.a[30], M.a[31]>( src2, src3 );
1423  }
1424  x0 |= x1; // combine result of two blends. Unused elements are zero
1425  }
1426  return x0;
1427  }
1428 
1429 #ifdef VCL_NAMESPACE
1430 }
1431 #endif
blend4
void blend4()
Definition: instrset.h:1292
blend8
void blend8()
Definition: instrset.h:1294
get_inttype
constexpr auto get_inttype()
Definition: instrset.h:467
blend_perm_indexes
constexpr EList< int, 2 *N > blend_perm_indexes(int const (&a)[N])
Definition: instrset.h:1212
hasXOP
bool hasXOP(void)
Definition: instrset_detect.cpp:126
details::size
constexpr auto size(const T &, Args &&...) noexcept
Definition: AnyDataWrapper.h:23
IOTest.N
N
Definition: IOTest.py:112
perm_punpckl
const int perm_punpckl
Definition: instrset.h:582
perm_shleft
const int perm_shleft
Definition: instrset.h:587
hasFMA3
bool hasFMA3(void)
Definition: instrset_detect.cpp:110
perm_broadcast
const int perm_broadcast
Definition: instrset.h:591
perm_largeblock
const int perm_largeblock
Definition: instrset.h:576
blend_rotateab
const int blend_rotateab
Definition: instrset.h:1025
physicalProcessors
int physicalProcessors(int *logical_processors=0)
gaudirun.s
string s
Definition: gaudirun.py:346
perm_rot_count
const int perm_rot_count
Definition: instrset.h:596
perm16_flags
constexpr uint64_t perm16_flags(int const (&a)[V::size()])
Definition: instrset.h:874
blend_perma
const int blend_perma
Definition: instrset.h:1017
make_bit_mask
constexpr uint64_t make_bit_mask(int const (&a)[N])
Definition: instrset.h:523
perm_flags
constexpr uint64_t perm_flags(int const (&a)[V::size()])
Definition: instrset.h:601
blend32
void blend32()
Definition: instrset.h:1298
perm_ipattern
const int perm_ipattern
Definition: instrset.h:597
gaudirun.c
c
Definition: gaudirun.py:525
perm_zeroing
const int perm_zeroing
Definition: instrset.h:573
blend_addz
const int blend_addz
Definition: instrset.h:1014
blend_rotate_big
const int blend_rotate_big
Definition: instrset.h:1029
gaudirun.output
output
Definition: gaudirun.py:521
blend_punpckhab
const int blend_punpckhab
Definition: instrset.h:1021
largeblock_indexes
constexpr EList< int, N/2 > largeblock_indexes(int const (&a)[N])
Definition: instrset.h:1247
pshufb_mask
constexpr auto pshufb_mask(int const (&A)[V::size()])
Definition: instrset.h:933
perm_rotate
const int perm_rotate
Definition: instrset.h:583
Const_uint_t
Definition: instrset.h:403
blend_flags
constexpr uint64_t blend_flags(int const (&a)[V::size()])
Definition: instrset.h:1035
perm_shright
const int perm_shright
Definition: instrset.h:585
bug_34121.t
t
Definition: bug_34121.py:31
blend_rotateba
const int blend_rotateba
Definition: instrset.h:1026
blend_same_pattern
const int blend_same_pattern
Definition: instrset.h:1020
perm_mask_broad
constexpr auto perm_mask_broad(int const (&A)[V::size()])
Definition: instrset.h:562
Gaudi::Units::m
constexpr double m
Definition: SystemOfUnits.h:107
perm_zext
const int perm_zext
Definition: instrset.h:592
ProduceConsume.j
j
Definition: ProduceConsume.py:104
blend_a
const int blend_a
Definition: instrset.h:1015
blend_zeroing
const int blend_zeroing
Definition: instrset.h:1011
zero_mask
constexpr auto zero_mask(int const (&a)[N])
Definition: instrset.h:484
make_broad_mask
constexpr auto make_broad_mask(uint64_t const m)
Definition: instrset.h:550
blend_allzero
const int blend_allzero
Definition: instrset.h:1012
blend2
void blend2()
Definition: instrset.h:1290
instrset_detect
int instrset_detect(void)
Definition: instrset_detect.cpp:63
hasFMA4
bool hasFMA4(void)
Definition: instrset_detect.cpp:118
blend_shufpattern
const int blend_shufpattern
Definition: instrset.h:1031
blend_shufba
const int blend_shufba
Definition: instrset.h:1028
hasAVX512ER
bool hasAVX512ER(void)
Definition: instrset_detect.cpp:142
EList
Definition: instrset.h:460
perm_perm
const int perm_perm
Definition: instrset.h:574
bit_scan_reverse_const
constexpr int bit_scan_reverse_const(uint64_t const n)
Definition: instrset.h:379
cpluginsvc.n
n
Definition: cpluginsvc.py:234
blend_rotpattern
const int blend_rotpattern
Definition: instrset.h:1032
perm_compress
const int perm_compress
Definition: instrset.h:593
blend_punpcklba
const int blend_punpcklba
Definition: instrset.h:1024
Const_int_t
Definition: instrset.h:401
perm_cross_lane
const int perm_cross_lane
Definition: instrset.h:579
largeblock_perm
constexpr EList< int, N/2 > largeblock_perm(int const (&a)[N])
Definition: instrset.h:976
perm_addz2
const int perm_addz2
Definition: instrset.h:578
perm_punpckh
const int perm_punpckh
Definition: instrset.h:581
blend_punpcklab
const int blend_punpcklab
Definition: instrset.h:1023
compress_mask
constexpr uint64_t compress_mask(int const (&a)[N])
Definition: instrset.h:822
perm_rotate_big
const int perm_rotate_big
Definition: instrset.h:589
hasAVX512VBMI
bool hasAVX512VBMI(void)
Definition: instrset_detect.cpp:150
expand_mask
constexpr uint64_t expand_mask(int const (&a)[N])
Definition: instrset.h:846
blend_punpckhba
const int blend_punpckhba
Definition: instrset.h:1022
EList::a
T a[N]
Definition: instrset.h:477
compareRootHistos.retval
retval
Definition: compareRootHistos.py:499
blend_b
const int blend_b
Definition: instrset.h:1016
V_DC
constexpr int V_DC
Definition: instrset.h:219
perm_same_pattern
const int perm_same_pattern
Definition: instrset.h:580
blend_largeblock
const int blend_largeblock
Definition: instrset.h:1013
perm_allzero
const int perm_allzero
Definition: instrset.h:575
zero_mask_broad
constexpr auto zero_mask_broad(int const (&A)[V::size()])
Definition: instrset.h:504
blend_half
auto blend_half(W const &a, W const &b)
Definition: instrset.h:1351
Gaudi::Units::L
constexpr double L
Definition: SystemOfUnits.h:117
perm_outofrange
const int perm_outofrange
Definition: instrset.h:595
blend_shufab
const int blend_shufab
Definition: instrset.h:1027
hasAVX512VBMI2
bool hasAVX512VBMI2(void)
Definition: instrset_detect.cpp:158
blend_half_indexes
constexpr EList< int, N > blend_half_indexes(int const (&a)[N])
Definition: instrset.h:1307
blend16
void blend16()
Definition: instrset.h:1296
perm_addz
const int perm_addz
Definition: instrset.h:577
blend_cross_lane
const int blend_cross_lane
Definition: instrset.h:1019
blend_outofrange
const int blend_outofrange
Definition: instrset.h:1030
blend_permb
const int blend_permb
Definition: instrset.h:1018
perm_expand
const int perm_expand
Definition: instrset.h:594