Go to the source code of this file.
|
struct | Gaudi::Accumulators::SigmasValueHandler< Arithmetic, Atomicity, ND > |
|
struct | Gaudi::Accumulators::SigmasValueHandler< Arithmetic, Atomicity, ND >::OutputTypeTS |
|
struct | Gaudi::Accumulators::SigmaNAccumulator< Arithmetic, Atomicity, ND > |
|
struct | Gaudi::Accumulators::SigmaNAccumulator< Arithmetic, Atomicity, 1 > |
| specialization for ND=1 to allow for better syntax More...
|
|
class | Gaudi::Accumulators::RootHistogramingAccumulatorInternal< Atomicity, Arithmetic, ND, AxisTupleType > |
| Internal Accumulator class dealing with RootHistograming. More...
|
|
struct | Gaudi::Accumulators::RootHistogramingAccumulatorInternal< Atomicity, Arithmetic, ND, AxisTupleType >::Proxy |
| Small procyclass allowing operator[] to work as expected on the RootHistogram that is to return something having an operator+= updating the histogram properly. More...
|
|
struct | Gaudi::Accumulators::RootHistogramingAccumulator< Atomicity, Arithmetic, std::integral_constant< unsigned int, 1 >, AxisTupleType > |
|
struct | Gaudi::Accumulators::RootHistogramingAccumulator< Atomicity, Arithmetic, std::integral_constant< unsigned int, 2 >, AxisTupleType > |
|
struct | Gaudi::Accumulators::RootHistogramingAccumulator< Atomicity, Arithmetic, std::integral_constant< unsigned int, 3 >, AxisTupleType > |
|
class | Gaudi::Accumulators::RootHistogramingCounterBase< 1, Atomicity, Arithmetic, Type, AxisTupleType > |
|
class | Gaudi::Accumulators::RootHistogramingCounterBase< 2, Atomicity, Arithmetic, Type, AxisTupleType > |
|
class | Gaudi::Accumulators::RootHistogramingCounterBase< 3, Atomicity, Arithmetic, Type, AxisTupleType > |
|
|
namespace | Gaudi |
| This file provides a Grammar for the type Gaudi::Accumulators::Axis It allows to use that type from python with a format liks : ( nbins, min, max, title ) where title can be ommited.
|
|
namespace | Gaudi::Accumulators |
| Efficient counter implementations for Gaudi.
|
|
|
constexpr unsigned int | Gaudi::Accumulators::NSUMS (unsigned int ND) |
| number of items in sums for a given dimension = 1 (nb items) + ND (sums of each dimension) + ND*(ND+1)/2 (square sums)
|
|