The Gaudi Framework  master (ff829712)
Loading...
Searching...
No Matches
KeyedContainer< DATATYPE, MAPPING > Class Template Reference

template class KeyedContainer, KeyedContainer.h More...

#include </builds/gaudi/Gaudi/GaudiKernel/include/GaudiKernel/KeyedContainer.h>

Inheritance diagram for KeyedContainer< DATATYPE, MAPPING >:
Collaboration diagram for KeyedContainer< DATATYPE, MAPPING >:

Classes

struct  _InsertRelease
 Internal functor for insertion of objects. More...
 
struct  _RemoveRelease
 Internal functor for insertion of objects. More...
 

Public Types

typedef DATATYPE contained_type
 Definition of the contained object type.
 
typedef MAPPING container_type
 Definition of the implementing container type.
 
typedef std::vector< contained_type * > seq_type
 General container specific type definitions.
 
typedef contained_type::key_type key_type
 Definition of the key type: re-use definition of contained type.
 
typedef seq_type::value_type value_type
 Sequential access: definition of type stored in sequential container.
 
typedef seq_type::reference reference
 Sequential access: reference type used in sequential container.
 
typedef seq_type::const_reference const_reference
 Sequential access: const reference type used in sequential container.
 
typedef seq_type::iterator iterator
 Sequential access: iterator type used in sequential container.
 
typedef seq_type::const_iterator const_iterator
 Sequential access: const iterator type used in sequential container.
 
typedef seq_type::reverse_iterator reverse_iterator
 Sequential access: reverse iterator type used in sequential container.
 
typedef seq_type::const_reverse_iterator const_reverse_iterator
 Sequential access: const reverse iterator type used in sequential container.
 
- Public Types inherited from ObjectContainerBase
typedef size_t size_type
 size_type, to conform the STL container interface
 

Public Member Functions

Constructors/Destructors
 KeyedContainer (void)
 Standard Constructor.
 
 KeyedContainer (KeyedContainer &&other)
 
 KeyedContainer (const KeyedContainer &)=delete
 
 ~KeyedContainer () override
 Destructor.
 
NOT FOR GENERAL USE ObjectContainerBase function overloads.

The implementation of these methods ensure the behaviour of the class as a type of class ObjectContainerBase.

This base class and its behaviour are only used by "generic" object handlers. These classes collaborate with several classes such as the

  • SmartRef classes.
  • Generic converters.
  • Interfaces for interactivity (e.g. Python)

For this reason, the entry points in this section are reserved for "generic" object handling and should NOT be used in public.

size_type numberOfObjects () const override
 ObjectContainerBase overload: Number of objects in the container.
 
long add (ContainedObject *pObject) override
 ObjectContainerBase overload: Add an object to the container.
 
long remove (ContainedObject *pObject) override
 ObjectContainerBase overload: Remove an object from the container.
 
ContainedObjectcontainedObject (long key_value) override
 ObjectContainerBase overload: Retrieve the object by reference given the long integer representation of the object's key.
 
ContainedObject const * containedObject (long key_value) const override
 Pointer to an object of a given distance.
 
long index (const ContainedObject *p) const override
 ObjectContainerBase overload: Retrieve the full long integer representation of the object's key from the object base class pointer.
 
virtual size_type containedObjects (std::vector< ContainedObject * > &v) const
 Retrieve the full content of the object container.
 
Container related implementation.

These methods allow to manipulate the container as a whole and to retrieve information about the internal behaviour of the container.

size_type size () const
 Number of objects in the container.
 
bool empty () const
 For consistency with STL: check if container is empty.
 
void reserve (size_type value)
 Reserve place for "value" objects in the container.
 
void clear ()
 Clear the entire content and erase the objects from the container.
 
virtual const std::vector< const ContainedObject * > * containedObjects () const
 Retrieve the full content of the object container by reference.
 
StatusCode update () override
 Reconfigure direct access to elements (Needed by POOL data loading) This function reuses the "update" callback of the generic DataObject base class.
 
Sequential array access to objects using iterators.

Sequential object access using iterators is much faster then object access by key.

In case all objects of the container should be addressed, use iterators rather than direct object access.

  • If the container is accessed through the iterators defined below, the elements may be sorted according to the user needs.
  • The container can be accesses in both const and non-const mode.
  • Iterations are supported in both directions: From the beginning to the end and the reverse.
iterator begin ()
 Retrieve start iterator.
 
const_iterator begin () const
 Retrieve start const iterator.
 
iterator end ()
 Retrieve terminating iterator.
 
const_iterator end () const
 Retrieve terminating const iterator.
 
reverse_iterator rbegin ()
 reverse_iterator returns the beginning of the reversed container
 
const_reverse_iterator rbegin () const
 const reverse_iterator returns the beginning of the reversed container
 
reverse_iterator rend ()
 reverse_iterator pointing to the end of the reversed container
 
const_reverse_iterator rend () const
 const reverse_iterator pointing to the end of the reversed container
 
Random access to objects in the container.

Access to objects is given by Key.

Please note, that random object access is nearly in all cases significantly slower than sequential access. If all objects in the contaienr should be addresses sequentially, use iterators rather than direct access. Direct access should only be used for selective retrieval of objects.

value_type object (const key_type &kval) const
 Object access by key.
 
value_type operator() (const key_type &kval) const
 STL algorithms support for object access.
 
Insert/Remove objects from the container.

Objects generally are identified by key.

Since keys are stored with the objects, insertions and removals are possible by key or by reference.

long erase (const key_type &kval)
 Remove/erase object (identified by key) from the container.
 
long erase (const value_type val)
 Remove/erase object (identified by pointer value) from the container.
 
long erase (iterator pos)
 Remove/erase object (identified by iterator) from the container.
 
void erase (iterator pos_start, iterator pos_stop, bool use_temp=false)
 Remove/erase objects by iterator range.
 
const key_typeinsert (const value_type val, const key_type &kval)
 Insert entry to the container with a valid key.
 
const key_typeinsert (std::unique_ptr< contained_type > val, const key_type &kval)
 
const key_typeinsert (const value_type val)
 Insert entry to the container with automatic key assignment.
 
const key_typeinsert (std::unique_ptr< contained_type > val)
 
- Public Member Functions inherited from DataObject
 DataObject ()
 Standard Constructor.
 
 DataObject (const DataObject &rhs)
 Copy Constructor.
 
DataObjectoperator= (const DataObject &rhs)
 Assignment Operator.
 
 DataObject (DataObject &&rhs)
 Move Constructor.
 
DataObjectoperator= (DataObject &&rhs)
 Move Assignment Operator.
 
virtual ~DataObject ()
 Standard Destructor.
 
virtual unsigned long addRef ()
 Add reference to object.
 
virtual unsigned long release ()
 release reference to object
 
const std::string & name () const
 Retreive DataObject name. It is the name when registered in the store.
 
void setRegistry (IRegistry *pRegistry)
 Set pointer to Registry.
 
IRegistryregistry () const
 Get pointer to Registry.
 
LinkManagerlinkMgr ()
 Retrieve Link manager.
 
const LinkManagerlinkMgr () const
 
unsigned char version () const
 Retrieve version number of this object representation.
 
void setVersion (unsigned char vsn)
 Set version number of this object representation.
 
unsigned long refCount () const
 Return the refcount.
 
virtual std::ostream & fillStream (std::ostream &s) const
 Fill the output stream (ASCII)
 

Private Types

typedef Containers::traits< container_type, contained_typetraits
 Traits class definition.
 

Friends

struct GaudiDict::KeyedContainerDict< DATATYPE >
 

Implementation helpers.

container_type m_cont
 Map container to facilitate object access by key.
 
seq_type m_sequential
 Array to allow sequential access to the object (can be ordered).
 
seq_typem_random
 Array to allow random access to objects (not exposed)
 
value_type i_object (const key_type &k) const
 Internal function to access objects within the container.
 
long i_erase (const_reference v, const key_type &k)
 Internal function to erase an object from the container.
 

DataObject virtual function overloads.

The implementation of these methods is required by the DataObject base class and determines the persistent run-time-type information.

const CLIDclID () const override
 Retrieve class ID.
 
static const CLIDclassID ()
 Retrieve class ID.
 

Additional Inherited Members

- Static Public Member Functions inherited from DataObject
static const CLIDclassID ()
 Retrieve reference to class definition structure (static access)
 
- Protected Member Functions inherited from ObjectContainerBase
 ObjectContainerBase ()=default
 Constructor.
 
 ObjectContainerBase (ObjectContainerBase &&)=default
 
ObjectContainerBaseoperator= (ObjectContainerBase &&)=default
 
 ~ObjectContainerBase () override=default
 

Detailed Description

template<class DATATYPE, class MAPPING = Containers::HashMap>
class KeyedContainer< DATATYPE, MAPPING >

template class KeyedContainer, KeyedContainer.h

This class represents a container, where the contained objects are accessed by a key. Such a key can be any class, which is able to convert to and from a 32-bit (long) integer.

To insert objects into the container, this implementation determines the key in the following way:

  • If the object is already keyed, the object's key is kept and cannot be modified.
  • If the object is NOT keyed, and a key is supplied, this key is used to register the object in the map and the same key is given to the object.
  • If the object is NOT keyed, and NO key is supplied, a key is generated by the map implementation and this key is given to the object.
  • It is not possible to insert two objects with the same key into the same container. This causes an exception.

Access to objects is given two-fold:

  • Using iterators. This access is very efficient. The container however, may not be manipulated: No objects may not be inserted or removed using iterators.
  • Using object keys: This access patterns provides random access to objects.

The KeyedContainer class uses for further specialization a traits class. By specializing these traits extra behaviour can be forced on request for special containers or special keys.

Author
M.Frank CERN/LHCb
Version
1.0

Definition at line 61 of file KeyedContainer.h.

Member Typedef Documentation

◆ const_iterator

template<class DATATYPE, class MAPPING = Containers::HashMap>
typedef seq_type::const_iterator KeyedContainer< DATATYPE, MAPPING >::const_iterator

Sequential access: const iterator type used in sequential container.

Definition at line 89 of file KeyedContainer.h.

◆ const_reference

template<class DATATYPE, class MAPPING = Containers::HashMap>
typedef seq_type::const_reference KeyedContainer< DATATYPE, MAPPING >::const_reference

Sequential access: const reference type used in sequential container.

Definition at line 85 of file KeyedContainer.h.

◆ const_reverse_iterator

template<class DATATYPE, class MAPPING = Containers::HashMap>
typedef seq_type::const_reverse_iterator KeyedContainer< DATATYPE, MAPPING >::const_reverse_iterator

Sequential access: const reverse iterator type used in sequential container.

Definition at line 95 of file KeyedContainer.h.

◆ contained_type

template<class DATATYPE, class MAPPING = Containers::HashMap>
typedef DATATYPE KeyedContainer< DATATYPE, MAPPING >::contained_type

Definition of the contained object type.

Definition at line 66 of file KeyedContainer.h.

◆ container_type

template<class DATATYPE, class MAPPING = Containers::HashMap>
typedef MAPPING KeyedContainer< DATATYPE, MAPPING >::container_type

Definition of the implementing container type.

Definition at line 68 of file KeyedContainer.h.

◆ iterator

template<class DATATYPE, class MAPPING = Containers::HashMap>
typedef seq_type::iterator KeyedContainer< DATATYPE, MAPPING >::iterator

Sequential access: iterator type used in sequential container.

Definition at line 87 of file KeyedContainer.h.

◆ key_type

template<class DATATYPE, class MAPPING = Containers::HashMap>
typedef contained_type::key_type KeyedContainer< DATATYPE, MAPPING >::key_type

Definition of the key type: re-use definition of contained type.

Definition at line 79 of file KeyedContainer.h.

◆ reference

template<class DATATYPE, class MAPPING = Containers::HashMap>
typedef seq_type::reference KeyedContainer< DATATYPE, MAPPING >::reference

Sequential access: reference type used in sequential container.

Definition at line 83 of file KeyedContainer.h.

◆ reverse_iterator

template<class DATATYPE, class MAPPING = Containers::HashMap>
typedef seq_type::reverse_iterator KeyedContainer< DATATYPE, MAPPING >::reverse_iterator

Sequential access: reverse iterator type used in sequential container.

Definition at line 91 of file KeyedContainer.h.

◆ seq_type

template<class DATATYPE, class MAPPING = Containers::HashMap>
typedef std::vector<contained_type*> KeyedContainer< DATATYPE, MAPPING >::seq_type

General container specific type definitions.

The following type definitions are generic to most STL containers and are also presented by the KeyedContainer class. These forward declarations typically are used by STL algorithms. Definition of the STL sequential access type

Definition at line 77 of file KeyedContainer.h.

◆ traits

template<class DATATYPE, class MAPPING = Containers::HashMap>
typedef Containers::traits<container_type, contained_type> KeyedContainer< DATATYPE, MAPPING >::traits
private

Traits class definition.

Specializing traits allows to specialize the container implementation for special needs.

Definition at line 101 of file KeyedContainer.h.

◆ value_type

template<class DATATYPE, class MAPPING = Containers::HashMap>
typedef seq_type::value_type KeyedContainer< DATATYPE, MAPPING >::value_type

Sequential access: definition of type stored in sequential container.

Definition at line 81 of file KeyedContainer.h.

Constructor & Destructor Documentation

◆ KeyedContainer() [1/3]

template<class DATATYPE, class MAPPING = Containers::HashMap>
KeyedContainer< DATATYPE, MAPPING >::KeyedContainer ( void )
inline

Standard Constructor.

Definition at line 168 of file KeyedContainer.h.

168 {
169 // avoid problems with strict-aliasing rules
172 m_cont.setup( (void*)sptr, (void**)rptr );
173 }
template class KeyedContainer, KeyedContainer.h
std::vector< contained_type * > seq_type

◆ KeyedContainer() [2/3]

template<class DATATYPE, class MAPPING = Containers::HashMap>
KeyedContainer< DATATYPE, MAPPING >::KeyedContainer ( KeyedContainer< DATATYPE, MAPPING > && other)
inline

Definition at line 174 of file KeyedContainer.h.

178 m_cont.setup( (void*)&m_sequential, (void**)&m_random );
179 std::for_each( begin(), end(), [this]( ContainedObject* obj ) { obj->setParent( this ); } );
180
181 other.m_cont.setup( (void*)&other.m_sequential, (void**)&other.m_random );
182 }
ObjectContainerBase()=default
Constructor.

◆ KeyedContainer() [3/3]

template<class DATATYPE, class MAPPING = Containers::HashMap>
KeyedContainer< DATATYPE, MAPPING >::KeyedContainer ( const KeyedContainer< DATATYPE, MAPPING > & )
delete

◆ ~KeyedContainer()

template<class DATATYPE, class MAPPING>
KeyedContainer< DATATYPE, MAPPING >::~KeyedContainer ( )
inlineoverride

Destructor.

Inline code for keyed container class.

Definition at line 492 of file KeyedContainer.h.

492 {
493 clear();
494 m_cont.clear();
495}

Member Function Documentation

◆ add()

template<class DATATYPE, class MAPPING>
long KeyedContainer< DATATYPE, MAPPING >::add ( ContainedObject * pObject)
inlineoverridevirtual

ObjectContainerBase overload: Add an object to the container.

Plese see the documentation of the member function

const key_type& insert(DATATYPE* pObject)

for further details.

Parameters
pObjectPointer to the object to be inserted into the container.
Returns
long integer representation of the key value.

Implements ObjectContainerBase.

Definition at line 587 of file KeyedContainer.h.

587 {
588 return traits::identifier( insert( dynamic_cast<typename seq_type::value_type>( pObject ) ) );
589}
const key_type & insert(const value_type val, const key_type &kval)
static long identifier(const key_type &k)
Full unhashed key identifier.
Definition KeyedTraits.h:87

◆ begin() [1/2]

template<class DATATYPE, class MAPPING = Containers::HashMap>
iterator KeyedContainer< DATATYPE, MAPPING >::begin ( )
inline

Retrieve start iterator.

Definition at line 306 of file KeyedContainer.h.

306{ return m_sequential.begin(); }

◆ begin() [2/2]

template<class DATATYPE, class MAPPING = Containers::HashMap>
const_iterator KeyedContainer< DATATYPE, MAPPING >::begin ( ) const
inline

Retrieve start const iterator.

Definition at line 308 of file KeyedContainer.h.

308{ return m_sequential.begin(); }

◆ classID()

template<class DATATYPE, class MAPPING = Containers::HashMap>
static const CLID & KeyedContainer< DATATYPE, MAPPING >::classID ( )
inlinestatic

Retrieve class ID.

Definition at line 196 of file KeyedContainer.h.

196 {
198 return clid;
199 }

◆ clear()

template<class DATATYPE, class MAPPING = Containers::HashMap>
void KeyedContainer< DATATYPE, MAPPING >::clear ( )
inline

Clear the entire content and erase the objects from the container.

Definition at line 278 of file KeyedContainer.h.

278{ erase( begin(), end() ); }
long erase(const key_type &kval)

◆ clID()

template<class DATATYPE, class MAPPING = Containers::HashMap>
const CLID & KeyedContainer< DATATYPE, MAPPING >::clID ( ) const
inlineoverridevirtual

Retrieve class ID.

Reimplemented from DataObject.

Definition at line 194 of file KeyedContainer.h.

194{ return this->classID(); }

◆ containedObject() [1/2]

template<class DATATYPE, class MAPPING = Containers::HashMap>
ContainedObject const * KeyedContainer< DATATYPE, MAPPING >::containedObject ( long dist) const
inlineoverridevirtual

Pointer to an object of a given distance.

Implements ObjectContainerBase.

Definition at line 251 of file KeyedContainer.h.

251 {
253 }
value_type i_object(const key_type &k) const
static key_type makeKey(long k)
Create key from its full integer representation.
Definition KeyedTraits.h:84

◆ containedObject() [2/2]

template<class DATATYPE, class MAPPING = Containers::HashMap>
ContainedObject * KeyedContainer< DATATYPE, MAPPING >::containedObject ( long key_value)
inlineoverridevirtual

ObjectContainerBase overload: Retrieve the object by reference given the long integer representation of the object's key.

Implements ObjectContainerBase.

Definition at line 250 of file KeyedContainer.h.

250{ return i_object( traits::makeKey( key_value ) ); }

◆ containedObjects() [1/2]

template<class DATATYPE, class MAPPING>
const std::vector< const ContainedObject * > * KeyedContainer< DATATYPE, MAPPING >::containedObjects ( ) const
inlinevirtual

Retrieve the full content of the object container by reference.

Returned is the random access container if in sequntial direct access mode. Otherwise the sequential access container is returned

Returns
Reference to sequencal access container.

Definition at line 520 of file KeyedContainer.h.

520 {
521 return (const std::vector<const ContainedObject*>*)( ( 0 == m_cont.isDirect() ) ? m_random : &m_sequential );
522}

◆ containedObjects() [2/2]

template<class DATATYPE, class MAPPING>
KeyedContainer< DATATYPE, MAPPING >::size_type KeyedContainer< DATATYPE, MAPPING >::containedObjects ( std::vector< ContainedObject * > & v) const
inlinevirtual

Retrieve the full content of the object container.

Parameters
vVector of contained objects, which will host all objects contained in this container.
Returns
Number of objects returned in v.

Definition at line 575 of file KeyedContainer.h.

575 {
576 vec.clear();
577 vec.reserve( size() );
578 for ( typename seq_type::value_type v : m_sequential ) {
580 vec.push_back( p );
581 }
582 return vec.size();
583}
void reserve(size_type value)
Reserve place for "value" objects in the container.

◆ empty()

template<class DATATYPE, class MAPPING = Containers::HashMap>
bool KeyedContainer< DATATYPE, MAPPING >::empty ( ) const
inline

For consistency with STL: check if container is empty.

Definition at line 274 of file KeyedContainer.h.

274{ return m_sequential.empty(); }

◆ end() [1/2]

template<class DATATYPE, class MAPPING = Containers::HashMap>
iterator KeyedContainer< DATATYPE, MAPPING >::end ( )
inline

Retrieve terminating iterator.

Definition at line 310 of file KeyedContainer.h.

310{ return m_sequential.end(); }

◆ end() [2/2]

template<class DATATYPE, class MAPPING = Containers::HashMap>
const_iterator KeyedContainer< DATATYPE, MAPPING >::end ( ) const
inline

Retrieve terminating const iterator.

Definition at line 312 of file KeyedContainer.h.

312{ return m_sequential.end(); }

◆ erase() [1/4]

template<class DATATYPE, class MAPPING = Containers::HashMap>
long KeyedContainer< DATATYPE, MAPPING >::erase ( const key_type & kval)
inline

Remove/erase object (identified by key) from the container.

Parameters
kvalKey to identify the object within the container.
Returns
Enumeration value from the Containers namespace:
  • OBJ_NOT_FOUND: The indicated object was not found in the container
  • OBJ_ERASED: The indicated object was found and removed from the container. The object was not yet deleted, because its reference count was non zero.
  • OBJ_DELETED The indicated object was found and removed from the container. The object was deleted, because its reference count was zero.

Definition at line 376 of file KeyedContainer.h.

376{ return i_erase( 0, kval ); }
long i_erase(const_reference v, const key_type &k)

◆ erase() [2/4]

template<class DATATYPE, class MAPPING = Containers::HashMap>
long KeyedContainer< DATATYPE, MAPPING >::erase ( const value_type val)
inline

Remove/erase object (identified by pointer value) from the container.

This member function removes an object, which is identified by its reference from the container. No key value is supplied. To identify the object within the container, the key of the object is used as it can be retrieved using the KeyedObject::key() method.

Parameters
valReference to object to be removed from the container.
Returns
Enumeration value from the Containers namespace:
  • OBJ_NOT_FOUND: The indicated object was not found in the container
  • OBJ_ERASED: The indicated object was found and removed from the container. The object was not yet deleted, because its reference count was non zero.
  • OBJ_DELETED The indicated object was found and removed from the container. The object was deleted, because its reference count was zero.

Definition at line 398 of file KeyedContainer.h.

398{ return ( val ) ? i_erase( val, val->key() ) : (long)Containers::OBJ_NOT_FOUND; }

◆ erase() [3/4]

template<class DATATYPE, class MAPPING = Containers::HashMap>
long KeyedContainer< DATATYPE, MAPPING >::erase ( iterator pos)
inline

Remove/erase object (identified by iterator) from the container.

This member function removes an object, which is identified by its reference from the container. No key value is supplied. To identify the object within the container, the key of the object is used as it can be retrieved using the KeyedObject::key() method.

Parameters
valReference to object to be removed from the container.
Returns
Enumeration value from the Containers namespace:
  • OBJ_NOT_FOUND: The indicated object was not found in the container
  • OBJ_ERASED: The indicated object was found and removed from the container. The object was not yet deleted, because its reference count was non zero.
  • OBJ_DELETED The indicated object was found and removed from the container. The object was deleted, because its reference count was zero.

Definition at line 420 of file KeyedContainer.h.

420{ return erase( *pos ); }

◆ erase() [4/4]

template<class DATATYPE, class MAPPING>
void KeyedContainer< DATATYPE, MAPPING >::erase ( iterator pos_start,
iterator pos_stop,
bool use_temp = false )
inline

Remove/erase objects by iterator range.

This member function removes all objects, which are within the sequential iterator range [pos_start, pos_stop[.

Parameters
pos_startStarting iterator of the range to be removed.
pos_stopStarting iterator of the range to be removed.
use_tempFlag to indicate that a temporary arry should be used.

Definition at line 612 of file KeyedContainer.h.

612 {
613 bool is_start = start_pos == m_sequential.begin();
614 bool is_stop = stop_pos == m_sequential.end();
615 if ( is_start && is_stop ) {
616 // Nothing special. Taken care of by Keyed object manager
617 } else if ( is_start || is_stop || use_tmp ) {
619 tmp.insert( tmp.end(), stop_pos, m_sequential.end() );
621 this->erase( m_sequential.begin(), m_sequential.end() );
622 std::for_each( tmp.begin(), tmp.end(), _InsertRelease( this ) );
623 return;
624 }
625 std::for_each( start_pos, stop_pos, _RemoveRelease( this ) );
626 seq_type* sptr = &m_sequential; // avoid problems with strict-aliasing rules
630 m_cont.erase( i1, i2 ); // cppcheck-suppress iterators1
631}
static long addRef(obj_type *v)
Add reference counter to object when inserted into the container.

◆ i_erase()

template<class DATATYPE, class MAPPING = Containers::HashMap>
long KeyedContainer< DATATYPE, MAPPING >::i_erase ( const_reference v,
const key_type & k )
inlineprivate

Internal function to erase an object from the container.

Definition at line 133 of file KeyedContainer.h.

133 {
134 value_type p = value_type( m_cont.erase( traits::hash( k ), v ) );
135 if ( p ) {
136 if ( p->parent() == this ) { p->setParent( 0 ); }
137 }
139 }
static long release(obj_type *v)
Release reference to object.
static long hash(const key_type &key_value)
Hash function for this key.
Definition KeyedTraits.h:89

◆ i_object()

template<class DATATYPE, class MAPPING = Containers::HashMap>
value_type KeyedContainer< DATATYPE, MAPPING >::i_object ( const key_type & k) const
inlineprivate

Internal function to access objects within the container.

Definition at line 127 of file KeyedContainer.h.

127 {
128 return 0 == m_cont.isDirect() ? value_type( *( m_random->begin() + traits::hash( k ) ) )
129 : value_type( m_cont.object( traits::hash( k ) ) );
130 }
Containers::traits< container_type, contained_type > traits
value_type object(const key_type &kval) const

◆ index()

template<class DATATYPE, class MAPPING>
long KeyedContainer< DATATYPE, MAPPING >::index ( const ContainedObject * p) const
inlineoverridevirtual

ObjectContainerBase overload: Retrieve the full long integer representation of the object's key from the object base class pointer.

Implements ObjectContainerBase.

Definition at line 566 of file KeyedContainer.h.

566 {
567 const contained_type* ptr = dynamic_cast<const contained_type*>( p );
568 if ( ptr ) return traits::identifier( ptr->key() );
569 return -1;
570}

◆ insert() [1/4]

template<class DATATYPE, class MAPPING>
const KeyedContainer< DATATYPE, MAPPING >::key_type & KeyedContainer< DATATYPE, MAPPING >::insert ( const value_type val)

Insert entry to the container with automatic key assignment.

This member function inserts an element, which is identified by its reference to the container. No key value is supplied. The key used to insert the object is retrieved from the element itself. In the event the object already has a key, the assigned key of the object is used. If no key was assigned to the object, (i.e. the object's key is equal to the invalid key), a key is generated according to the number of objects present in the container.

The object will not be inserted and an exception will be raised under the following conditions:

  • A key was already assigned to the object, but another object with the same key is already present in the container.
Parameters
valReference to object to be inserted into the container.
Returns
Key, which was used to index the object within the container. If the operation is not successful, an exception is thrown.

Definition at line 545 of file KeyedContainer.h.

545 {
546 if ( 0 != val ) {
547 if ( val->hasKey() ) {
548 if ( m_cont.insert( this, val, val, traits::hash( val->key() ) ) == Containers::OBJ_INSERTED ) {
550 return val->key();
551 }
552 }
553 long k0;
554 if ( m_cont.insert( this, val, val, &k0 ) == Containers::OBJ_INSERTED ) {
557 return val->key();
558 }
559 }
560 // Cannot insert object...indicate bad object insertion...
562 return val->key();
563}
GAUDI_API void cannotInsertToContainer()
Function to be called to indicate that an object cannot be inserted to the container.
static void setKey(obj_type *v, const key_type &k)
Set object key when inserted into the container.
Definition KeyedTraits.h:91

◆ insert() [2/4]

template<class DATATYPE, class MAPPING>
const KeyedContainer< DATATYPE, MAPPING >::key_type & KeyedContainer< DATATYPE, MAPPING >::insert ( const value_type val,
const key_type & kval )
inline

Insert entry to the container with a valid key.

This member function inserts an element, which is identified by its reference to the container. The element will be inserted using the specified key. If the object is already keyed, the long representations of the supplied key and the object's key must agree.

The object will not be inserted and an exception will be raised under the following conditions:

  • The supplied key does not agree with the object's key.
  • An object with the supplied key is already present in the container.
Parameters
valReference to object to be inserted into the container. The object reference may NOT be NULL.
kvalKey to identify the object within the container.
Returns
Key, which was used to index the object within the container. If the operation is not successful, an exception is thrown.

Definition at line 526 of file KeyedContainer.h.

526 {
527 if ( val ) {
528 long k0 = traits::hash( kval );
529 if ( !val->hasKey() || ( traits::hash( val->key() ) == k0 ) ) {
530 if ( m_cont.insert( this, val, val, k0 ) == Containers::OBJ_INSERTED ) {
531 if ( !val->hasKey() ) traits::setKey( val, kval );
533 return val->key();
534 }
535 }
536 }
537 // Cannot insert object...indicate bad object insertion...
539 return val->key();
540}

◆ insert() [3/4]

template<class DATATYPE, class MAPPING = Containers::HashMap>
const key_type & KeyedContainer< DATATYPE, MAPPING >::insert ( std::unique_ptr< contained_type > val)
inline

Definition at line 479 of file KeyedContainer.h.

479{ return insert( val.release() ); }
virtual unsigned long release()
release reference to object

◆ insert() [4/4]

template<class DATATYPE, class MAPPING = Containers::HashMap>
const key_type & KeyedContainer< DATATYPE, MAPPING >::insert ( std::unique_ptr< contained_type > val,
const key_type & kval )
inline

Definition at line 452 of file KeyedContainer.h.

452 {
453 return insert( val.release(), kval );
454 }

◆ numberOfObjects()

template<class DATATYPE, class MAPPING = Containers::HashMap>
size_type KeyedContainer< DATATYPE, MAPPING >::numberOfObjects ( ) const
inlineoverridevirtual

ObjectContainerBase overload: Number of objects in the container.

Implements ObjectContainerBase.

Definition at line 219 of file KeyedContainer.h.

219{ return m_sequential.size(); }

◆ object()

template<class DATATYPE, class MAPPING = Containers::HashMap>
value_type KeyedContainer< DATATYPE, MAPPING >::object ( const key_type & kval) const
inline

Object access by key.

Access contained objects by key.

Parameters
kvalKey of the object to be returned.
Returns
Valid reference to the requested object. If the key of the requested object cannot be found in the container a null reference is returned.

Definition at line 340 of file KeyedContainer.h.

340{ return i_object( kval ); }

◆ operator()()

template<class DATATYPE, class MAPPING = Containers::HashMap>
value_type KeyedContainer< DATATYPE, MAPPING >::operator() ( const key_type & kval) const
inline

STL algorithms support for object access.

Access contained objects by key using the operator(), which is demanded by STL algorithms.

Parameters
kvalKey of the object to be returned.
Returns
Valid reference to the requested object. If the key of the requested object cannot be found in the container a null reference is returned.

Definition at line 351 of file KeyedContainer.h.

351{ return i_object( kval ); }

◆ rbegin() [1/2]

template<class DATATYPE, class MAPPING = Containers::HashMap>
reverse_iterator KeyedContainer< DATATYPE, MAPPING >::rbegin ( )
inline

reverse_iterator returns the beginning of the reversed container

Definition at line 314 of file KeyedContainer.h.

314{ return m_sequential.rbegin(); }

◆ rbegin() [2/2]

template<class DATATYPE, class MAPPING = Containers::HashMap>
const_reverse_iterator KeyedContainer< DATATYPE, MAPPING >::rbegin ( ) const
inline

const reverse_iterator returns the beginning of the reversed container

Definition at line 316 of file KeyedContainer.h.

316{ return m_sequential.rbegin(); }

◆ remove()

template<class DATATYPE, class MAPPING>
long KeyedContainer< DATATYPE, MAPPING >::remove ( ContainedObject * pObject)
inlineoverridevirtual

ObjectContainerBase overload: Remove an object from the container.

Because this function is also called from the destructor of The ContainedObject class, it is no longer possible to deduce the key from the object itself. It is hence necessary to relay on the NON-EXISTENCE of virtual inheritance, ie. (void*)pObject = (void*)(contained_object). If the virtual object table is still intact, the normal erase is called.

Parameters
pObjectPointer to the object to be removed from the container.

Implements ObjectContainerBase.

Definition at line 593 of file KeyedContainer.h.

593 {
594 contained_type* p1 = dynamic_cast<contained_type*>( p );
595 if ( p1 ) { // Normal case; object still fully intact
596 return this->erase( p1 );
597 } else if ( p ) {
598 const ObjectContainerBase* par = p->parent();
599 // The following should never occur: object is in a funny state,
600 // Because the parent was explicitly set to NULL in the
601 // KeyeObject destructor.
602 // - It cannot be a KeyedObject: It would not have a parent
603 // - Still the parent is present: We are not in the destructor
604 // of KeyedObject
606 return m_cont.erase( 0, p ) == 0 ? (long)Containers::OBJ_ERASED : (long)Containers::OBJ_NOT_FOUND;
607 }
608 return (long)Containers::OBJ_NOT_FOUND;
609}
GAUDI_API void invalidContainerOperation()
Function to be called to indicate that an operation should be performed on the container or it's cont...

◆ rend() [1/2]

template<class DATATYPE, class MAPPING = Containers::HashMap>
reverse_iterator KeyedContainer< DATATYPE, MAPPING >::rend ( )
inline

reverse_iterator pointing to the end of the reversed container

Definition at line 318 of file KeyedContainer.h.

318{ return m_sequential.rend(); }

◆ rend() [2/2]

template<class DATATYPE, class MAPPING = Containers::HashMap>
const_reverse_iterator KeyedContainer< DATATYPE, MAPPING >::rend ( ) const
inline

const reverse_iterator pointing to the end of the reversed container

Definition at line 320 of file KeyedContainer.h.

320{ return m_sequential.rend(); }

◆ reserve()

template<class DATATYPE, class MAPPING = Containers::HashMap>
void KeyedContainer< DATATYPE, MAPPING >::reserve ( size_type value)
inline

Reserve place for "value" objects in the container.

Definition at line 276 of file KeyedContainer.h.

276{ m_cont.reserve( value ); }

◆ size()

template<class DATATYPE, class MAPPING = Containers::HashMap>
size_type KeyedContainer< DATATYPE, MAPPING >::size ( ) const
inline

Number of objects in the container.

Definition at line 272 of file KeyedContainer.h.

272{ return m_sequential.size(); }

◆ update()

template<class DATATYPE, class MAPPING>
StatusCode KeyedContainer< DATATYPE, MAPPING >::update ( )
inlineoverridevirtual

Reconfigure direct access to elements (Needed by POOL data loading) This function reuses the "update" callback of the generic DataObject base class.

Reimplemented from DataObject.

Definition at line 499 of file KeyedContainer.h.

499 {
500 int count = 0;
501 m_cont.clearDirect();
502 for ( typename seq_type::value_type v : m_sequential ) {
503 if ( v ) {
504 if ( !v->hasKey() ) {
505 traits::setKey( v, v->key() );
506 traits::addRef( v );
507 }
508 long k0 = traits::hash( v->key() );
509 if ( m_cont.insertDirect( this, v, v, k0 ) == Containers::OBJ_INSERTED ) {}
510 } else {
511 ++count;
512 }
513 }
515 return StatusCode::SUCCESS;
516}

Friends And Related Symbol Documentation

◆ GaudiDict::KeyedContainerDict< DATATYPE >

template<class DATATYPE, class MAPPING = Containers::HashMap>
friend struct GaudiDict::KeyedContainerDict< DATATYPE >
friend

Definition at line 612 of file KeyedContainer.h.

Member Data Documentation

◆ m_cont

template<class DATATYPE, class MAPPING = Containers::HashMap>
container_type KeyedContainer< DATATYPE, MAPPING >::m_cont
private

Map container to facilitate object access by key.

Definition at line 107 of file KeyedContainer.h.

◆ m_random

template<class DATATYPE, class MAPPING = Containers::HashMap>
seq_type* KeyedContainer< DATATYPE, MAPPING >::m_random
private

Array to allow random access to objects (not exposed)

Definition at line 111 of file KeyedContainer.h.

◆ m_sequential

template<class DATATYPE, class MAPPING = Containers::HashMap>
seq_type KeyedContainer< DATATYPE, MAPPING >::m_sequential
private

Array to allow sequential access to the object (can be ordered).

Definition at line 109 of file KeyedContainer.h.


The documentation for this class was generated from the following file: