6 #include "GaudiKernel/MsgStream.h"
8 #include "gsl/gsl_vector.h"
9 #include "gsl/gsl_multimin.h"
10 #include "gsl/gsl_math.h"
11 #include "gsl/gsl_matrix.h"
12 #include "gsl/gsl_linalg.h"
13 #include "gsl/gsl_blas.h"
14 #include "gsl/gsl_errno.h"
21 using namespace CLHEP;
33 (
const FuncMinimum::GenFunc&
func ,
34 FuncMinimum::Arg& arg )
39 const size_t N = func.dimensionality () ;
41 for(
size_t i = 0 ;
i <
N ; ++
i )
43 Genfun::GENFUNCTION
fun = func.partial(
i);
44 m_grad.push_back (fun.clone());
53 const std::string&
name,
58 declareProperty (
"Algorithm",
m_algType );
66 declareProperty (
"Tol" ,
m_tol );
73 double fun_gsl (
const gsl_vector* v ,
78 const FuncMinimum::GenFunc& eq = *(local->
equation());
81 for (
unsigned int i = 0;
i < v->size; ++
i) {
82 arg[
i] = gsl_vector_get (v,
i);
89 void dfun_gsl (
const gsl_vector* v ,
void * params,
97 for (
unsigned int i = 0;
i < v->size; ++
i) {
98 arg[
i] = gsl_vector_get (v,
i);
102 for(
unsigned int i = 0 ;
i < df->size ; ++
i )
104 Genfun::GENFUNCTION f = *(grad[
i]);
105 gsl_vector_set ( df,
i, f(arg) );
113 void fdfun_gsl (
const gsl_vector* v ,
118 *f = fun_gsl( v , params );
119 dfun_gsl ( v , params, df);
135 gsl_vector_view vect = gsl_vector_view_array ( &arg[0] ,
139 FuncMinimumMisc local (func, arg);
141 gsl_multimin_function_fdf
function;
143 function.f = &fun_gsl;
144 function.df = &dfun_gsl;
145 function.fdf = &fdfun_gsl;
146 function.n = vect.vector.size;
147 function.params = (
void*) &local;
151 const gsl_multimin_fdfminimizer_type *T = m_type ;
153 gsl_multimin_fdfminimizer *
s;
155 s = gsl_multimin_fdfminimizer_alloc ( T, vect.vector.size);
157 gsl_multimin_fdfminimizer_set ( s, &
function,
158 &vect.vector, m_step_size, m_tol);
160 for( iter = 0 ; iter < m_max_iter ; ++iter )
162 status = gsl_multimin_fdfminimizer_iterate (s);
167 (
"Error from gsl_multimin_fdfminimizer_iterate '"
168 + std::string(gsl_strerror(status)) +
"'") ;
171 status = gsl_multimin_test_gradient (s->gradient,
175 if ( status != GSL_CONTINUE ) {
break; }
178 for (
unsigned int i = 0;
i < vect.vector.size; ++
i)
180 gsl_vector_set (&vect.vector,
i, gsl_vector_get (s->x,
i));
183 if (status == GSL_SUCCESS)
186 <<
"We stopped in the method on the " << iter
187 <<
" iteration (we have maximum " << m_max_iter
188 <<
" iterations)" <<
endmsg;
190 log <<
"The Euclidean norm of gradient = "
191 << gsl_blas_dnrm2 (s->gradient)
192 <<
" by the absolute tolerance = "
193 << m_norm_gradient <<
endmsg;
195 else if (status == GSL_CONTINUE && iter <= m_max_iter )
197 return Error (
"Method finished with '"
198 + std::string(gsl_strerror(status))
203 return Error (
"Method finished with '" +
204 std::string(gsl_strerror(status))
208 gsl_multimin_fdfminimizer_free (s);
212 return Error (
"Method finished with '"
213 + std::string(gsl_strerror(status))
237 return Error (
"MINIMUM IS NOT FOUND. StatusCode = '"
243 HepSymMatrix cov(arg.dimension(), 0);
244 for (
unsigned int i = 0;
i < arg.dimension(); ++
i)
246 Genfun::GENFUNCTION f = func.partial(
i);
247 for (
unsigned int j =
i; j < arg.dimension(); ++j)
249 Genfun::GENFUNCTION fij = f.partial(j);
250 cov(
i+1, j+1) = 0.5 * fij(arg);
255 covar = cov.inverse(inv);
259 (
"Matrix of Error is not complete successful");
277 return Error (
"Could not initialize base class GaudiTool", sc);
283 m_type = gsl_multimin_fdfminimizer_conjugate_fr ;
285 <<
"Minimization algorithm to be used: "
286 <<
"'gsl_multimin_fdfminimizer_conjugate_fr'"
291 m_type = gsl_multimin_fdfminimizer_conjugate_pr ;
293 <<
"Minimization algorithm to be used: "
294 <<
"'gsl_multimin_fdfminimizer_conjugate_pr'"
299 m_type = gsl_multimin_fdfminimizer_vector_bfgs ;
301 <<
"Minimization algorithm to be used: " <<
302 "'gsl_multimin_fdfminimizer_vector_bfgs'" <<
endmsg;
304 else if (
"steepest_descent" ==
m_algType )
306 m_type = gsl_multimin_fdfminimizer_steepest_descent ;
308 <<
"Minimization algorithm to be used: "
309 <<
"'gsl_multimin_fdfminimizer_steepest_descent'"
314 return Error(
" Unknown algorithm type '" +
m_algType +
"'");
328 return Error(
"Could not finalize base class GaudiTool", sc);
Definition of the MsgStream class used to transmit messages.
string to_string(const T &value)
MsgStream & endmsg(MsgStream &s)
MsgStream Modifier: endmsg. Calls the output method of the MsgStream.
unsigned long getCode() const
Get the status code by value.
Genfun::Argument Arg
Argument of function "GenFunc" (.
const Arg & argument() const
std::vector< const GenFunc * > Gradient
const GenFunc * equation() const
const gsl_multimin_fdfminimizer_type * m_type
bool isFailure() const
Test for a status code of FAILURE.
StatusCode minimum(const GenFunc &func, Arg &arg) const override
Find minimum of the function "GenFunc".
Genfun::AbsFunction GenFunc
Function which we minimize (.
This class is used for returning status codes from appropriate routines.
#define DECLARE_COMPONENT(type)
Definition of the basic interface.
The simplest concrete implementation of IFuncMinimum interface.
const Gradient & gradient() const
Base class used to extend a class implementing other interfaces.
CLHEP::HepSymMatrix Covariance
Covariance matrix (matrix of error) (.
double fun(const std::vector< double > &x)
StatusCode finalize() override
FuncMinimum()=delete
default constructor is private
StatusCode initialize() override
Overriding initialize.