8 #include "gsl/gsl_vector.h" 9 #include "gsl/gsl_multimin.h" 10 #include "gsl/gsl_math.h" 11 #include "gsl/gsl_matrix.h" 12 #include "gsl/gsl_linalg.h" 13 #include "gsl/gsl_blas.h" 14 #include "gsl/gsl_errno.h" 21 using namespace CLHEP;
33 (
const FuncMinimum::GenFunc&
func ,
34 FuncMinimum::Arg& arg )
39 const size_t N = func.dimensionality () ;
41 for(
size_t i = 0 ; i <
N ; ++i )
43 Genfun::GENFUNCTION
fun = func.partial(i);
44 m_grad.push_back (fun.clone());
52 double fun_gsl (
const gsl_vector* v ,
57 const FuncMinimum::GenFunc& eq = *(local->
equation());
60 for (
unsigned int i = 0; i < v->size; ++i) {
61 arg[i] = gsl_vector_get (v, i);
68 void dfun_gsl (
const gsl_vector* v ,
void * params,
76 for (
unsigned int i = 0; i < v->size; ++i) {
77 arg[i] = gsl_vector_get (v, i);
81 for(
unsigned int i = 0 ; i < df->size ; ++i )
83 Genfun::GENFUNCTION f = *(grad[i]);
84 gsl_vector_set ( df, i, f(arg) );
92 void fdfun_gsl (
const gsl_vector* v ,
97 *f = fun_gsl( v , params );
98 dfun_gsl ( v , params, df);
114 gsl_vector_view vect = gsl_vector_view_array ( &arg[0] ,
116 FuncMinimumMisc local (func, arg);
118 gsl_multimin_function_fdf
function;
120 function.f = &fun_gsl;
121 function.df = &dfun_gsl;
122 function.fdf = &fdfun_gsl;
123 function.n = vect.vector.size;
124 function.params = (
void*) &local;
128 const gsl_multimin_fdfminimizer_type *T =
m_type ;
130 gsl_multimin_fdfminimizer *
s;
132 s = gsl_multimin_fdfminimizer_alloc ( T, vect.vector.size);
134 gsl_multimin_fdfminimizer_set ( s, &
function,
135 &vect.vector, m_step_size, m_tol);
139 status = gsl_multimin_fdfminimizer_iterate (s);
144 (
"Error from gsl_multimin_fdfminimizer_iterate '" 148 status = gsl_multimin_test_gradient (s->gradient,
152 if ( status != GSL_CONTINUE ) {
break; }
155 for (
unsigned int i = 0; i < vect.vector.size; ++i)
157 gsl_vector_set (&vect.vector, i, gsl_vector_get (s->x, i));
160 if (status == GSL_SUCCESS)
163 <<
"We stopped in the method on the " << iter
164 <<
" iteration (we have maximum " << m_max_iter
165 <<
" iterations)" <<
endmsg;
167 msgStream() <<
"The Euclidean norm of gradient = " 168 << gsl_blas_dnrm2 (s->gradient)
169 <<
" by the absolute tolerance = " 170 << m_norm_gradient <<
endmsg;
172 else if (status == GSL_CONTINUE && iter <= m_max_iter )
174 return Error (
"Method finished with '" 180 return Error (
"Method finished with '" +
185 gsl_multimin_fdfminimizer_free (s);
189 return Error (
"Method finished with '" 212 return Error (
"MINIMUM IS NOT FOUND. StatusCode = '" 218 HepSymMatrix cov(arg.dimension(), 0);
219 for (
unsigned int i = 0; i < arg.dimension(); ++i)
221 Genfun::GENFUNCTION f = func.partial(i);
222 for (
unsigned int j = i; j < arg.dimension(); ++j)
224 Genfun::GENFUNCTION fij = f.partial(j);
225 cov(i+1, j+1) = 0.5 * fij(arg);
230 covar = cov.inverse(inv);
234 (
"Matrix of Error is not complete successful");
250 return Error (
"Could not initialize base class GaudiTool", sc);
256 m_type = gsl_multimin_fdfminimizer_conjugate_fr ;
258 <<
"Minimization algorithm to be used: " 259 <<
"'gsl_multimin_fdfminimizer_conjugate_fr'" 264 m_type = gsl_multimin_fdfminimizer_conjugate_pr ;
266 <<
"Minimization algorithm to be used: " 267 <<
"'gsl_multimin_fdfminimizer_conjugate_pr'" 272 m_type = gsl_multimin_fdfminimizer_vector_bfgs ;
274 <<
"Minimization algorithm to be used: " <<
275 "'gsl_multimin_fdfminimizer_vector_bfgs'" <<
endmsg;
277 else if (
"steepest_descent" ==
m_algType )
279 m_type = gsl_multimin_fdfminimizer_steepest_descent ;
281 <<
"Minimization algorithm to be used: " 282 <<
"'gsl_multimin_fdfminimizer_steepest_descent'" 299 return Error(
"Could not finalize base class GaudiTool", sc);
unsigned long getCode() const
Get the status code by value.
Genfun::Argument Arg
Argument of function "GenFunc" (.
const Arg & argument() const
const GenFunc * equation() const
bool isFailure() const
Test for a status code of FAILURE.
#define DECLARE_COMPONENT(type)
Gaudi::Property< std::string > m_algType
Gaudi::Property< double > m_max_iter
Genfun::AbsFunction GenFunc
Function which we minimize (.
This class is used for returning status codes from appropriate routines.
The simplest concrete implementation of IFuncMinimum interface.
const Gradient & gradient() const
MsgStream & debug() const
shortcut for the method msgStream(MSG::DEBUG)
CLHEP::HepSymMatrix Covariance
Covariance matrix (matrix of error) (.
StatusCode minimum(const GenFunc &func, Arg &arg) const override
Find minimum of the function "GenFunc".
double fun(const std::vector< double > &x)
MsgStream & msgStream() const
Return an uninitialized MsgStream.
const gsl_multiroot_fdfsolver_type * m_type
StatusCode finalize() override
MsgStream & endmsg(MsgStream &s)
MsgStream Modifier: endmsg. Calls the output method of the MsgStream.
StatusCode initialize() override
Overriding initialize.