The Gaudi Framework  v29r2 (7a580596)
PrecedenceRulesGraph.cpp
Go to the documentation of this file.
1 #include "PrecedenceRulesGraph.h"
2 #include "PRGraphVisitors.h"
3 
4 #include <boost/property_map/transform_value_property_map.hpp>
5 #include <fstream>
6 
8 
9 #define ON_DEBUG if ( msgLevel( MSG::DEBUG ) )
10 #define ON_VERBOSE if ( msgLevel( MSG::VERBOSE ) )
11 
12 namespace concurrency
13 {
14 
15  //---------------------------------------------------------------------------
16  std::string ControlFlowNode::stateToString( const int& stateId ) const
17  {
18 
19  if ( 0 == stateId )
20  return "FALSE";
21  else if ( 1 == stateId )
22  return "TRUE";
23  else
24  return "UNDEFINED";
25  }
26 
27  //---------------------------------------------------------------------------
29  {
30 
31  for ( auto node : m_children ) delete node;
32  }
33 
34  //---------------------------------------------------------------------------
36  {
37 
38  if ( std::find( m_parents.begin(), m_parents.end(), node ) == m_parents.end() ) m_parents.push_back( node );
39  }
40 
41  //--------------------------------------------------------------------------
43  {
44 
45  if ( std::find( m_children.begin(), m_children.end(), node ) == m_children.end() ) m_children.push_back( node );
46  }
47 
48  //---------------------------------------------------------------------------
50  const std::vector<int>& node_decisions, const unsigned int& recursionLevel ) const
51  {
52 
53  output << std::string( recursionLevel, ' ' ) << m_nodeName << " (" << m_nodeIndex << ")"
54  << ", w/ decision: " << stateToString( node_decisions[m_nodeIndex] ) << "(" << node_decisions[m_nodeIndex]
55  << ")" << std::endl;
56 
57  for ( auto daughter : m_children ) daughter->printState( output, states, node_decisions, recursionLevel + 2 );
58  }
59 
60  //---------------------------------------------------------------------------
62  {
63 
64  if ( visitor.visitEnter( *this ) ) {
65  // try to aggregate a decision
66  bool result = visitor.visit( *this );
67 
68  // if a decision was made for this node, propagate the result upwards
69  if ( result ) {
70  for ( auto parent : m_parents ) {
71  parent->accept( visitor );
72  }
73  return false;
74  }
75 
76  // if no decision can be made yet, request further information downwards
77  for ( auto child : m_children ) {
78  bool result = child->accept( visitor );
79  if ( !m_modeConcurrent )
80  if ( result ) break; // stop on first unresolved child if its decision hub is sequential
81  }
82 
83  return true; // visitor was accepted to try to aggregate the node's decision
84  }
85 
86  return false; // visitor was rejected (since the decision node has an aggregated decision already)
87  }
88 
89  //---------------------------------------------------------------------------
91  {
92 
93  for ( auto node : m_outputs ) {
94  delete node;
95  }
96  }
97 
98  //---------------------------------------------------------------------------
100  const std::vector<int>& node_decisions, const unsigned int& recursionLevel ) const
101  {
102  output << std::string( recursionLevel, ' ' ) << m_nodeName << " (" << m_nodeIndex << ")"
103  << ", w/ decision: " << stateToString( node_decisions[m_nodeIndex] ) << "(" << node_decisions[m_nodeIndex]
104  << ")"
105  << ", in state: " << AlgsExecutionStates::stateNames[states[m_algoIndex]] << std::endl;
106  }
107 
108  //---------------------------------------------------------------------------
110  {
111 
112  if ( visitor.visitEnter( *this ) ) {
113  visitor.visit( *this );
114  return true; // visitor was accepted to promote the algorithm
115  }
116 
117  return false; // visitor was rejected (since the algorithm already produced a decision)
118  }
119 
120  //---------------------------------------------------------------------------
122  {
123 
124  if ( std::find( m_parents.begin(), m_parents.end(), node ) == m_parents.end() ) m_parents.push_back( node );
125  }
126 
127  //---------------------------------------------------------------------------
129  {
130 
131  if ( std::find( m_outputs.begin(), m_outputs.end(), node ) == m_outputs.end() ) m_outputs.push_back( node );
132  }
133 
134  //---------------------------------------------------------------------------
136  {
137 
138  if ( std::find( m_inputs.begin(), m_inputs.end(), node ) == m_inputs.end() ) m_inputs.push_back( node );
139  }
140 
141  //---------------------------------------------------------------------------
143  {
144  if ( serviceLocator()->existsService( "CondSvc" ) ) {
145  SmartIF<ICondSvc> condSvc{serviceLocator()->service( "CondSvc" )};
146  if ( condSvc.isValid() ) {
147  info() << "CondSvc found. DF precedence rules will be augmented with 'Conditions'" << endmsg;
148  m_conditionsRealmEnabled = true;
149  }
150  }
151 
152  // Detach condition algorithms from the CF realm
153  if ( m_conditionsRealmEnabled ) {
154  SmartIF<ICondSvc> condSvc{serviceLocator()->service( "CondSvc", false )};
155  auto& condAlgs = condSvc->condAlgs();
156  for ( const auto algo : condAlgs ) {
157  auto itA = m_algoNameToAlgoNodeMap.find( algo->name() );
158  concurrency::AlgorithmNode* algoNode;
159  if ( itA != m_algoNameToAlgoNodeMap.end() ) {
160  algoNode = itA->second;
161  debug() << "Detaching condition algorithm '" << algo->name() << "' from the CF realm.." << endmsg;
162  for ( auto parent : algoNode->getParentDecisionHubs() ) {
163  parent->m_children.erase( std::remove( parent->m_children.begin(), parent->m_children.end(), algoNode ),
164  parent->m_children.end() );
165  }
166  algoNode->m_parents.clear();
167 
168  } else {
169  warning() << "Algorithm '" << algo->name() << "' is not registered in the graph" << endmsg;
170  }
171  }
172  }
173 
174  StatusCode sc = buildDataDependenciesRealm();
175 
176  if ( !sc.isSuccess() ) error() << "Could not build the data dependency realm." << endmsg;
177 
178  ON_DEBUG debug() << dumpDataFlow() << endmsg;
179 
180  return sc;
181  }
182 
183  //---------------------------------------------------------------------------
185  {
186 
187  const std::string& algoName = algo->name();
188 
189  m_algoNameToAlgoInputsMap[algoName] = algo->inputDataObjs();
190  m_algoNameToAlgoOutputsMap[algoName] = algo->outputDataObjs();
191 
192  ON_VERBOSE
193  {
194  verbose() << " Inputs of " << algoName << ": ";
195  for ( auto tag : algo->inputDataObjs() ) verbose() << tag << " | ";
196  verbose() << endmsg;
197 
198  verbose() << " Outputs of " << algoName << ": ";
199  for ( auto tag : algo->outputDataObjs() ) verbose() << tag << " | ";
200  verbose() << endmsg;
201  }
202  }
203 
204  //---------------------------------------------------------------------------
206  {
207 
208  StatusCode global_sc( StatusCode::SUCCESS, true );
209 
210  // Production of DataNodes by AlgorithmNodes (DataNodes are created here)
211  for ( auto algo : m_algoNameToAlgoNodeMap ) {
212 
213  auto& outputs = m_algoNameToAlgoOutputsMap[algo.first];
214  for ( auto output : outputs ) {
215  const auto sc = addDataNode( output );
216  if ( !sc.isSuccess() ) {
217  error() << "Extra producer (" << algo.first << ") for DataObject @ " << output
218  << " has been detected: this is not allowed." << endmsg;
219  global_sc = sc;
220  }
221  auto dataNode = getDataNode( output );
222  dataNode->addProducerNode( algo.second );
223  algo.second->addOutputDataNode( dataNode );
224  ON_DEBUG
225  { // Mirror the action above in the BGL-based graph
226  boost::add_edge( node( algo.second->getNodeName() ), node( output.fullKey() ), m_PRGraph );
227  }
228  }
229  }
230 
231  // Consumption of DataNodes by AlgorithmNodes
232  for ( auto algo : m_algoNameToAlgoNodeMap ) {
233 
234  for ( auto input : m_algoNameToAlgoInputsMap[algo.first] ) {
235 
236  DataNode* dataNode = nullptr;
237 
238  auto itP = m_dataPathToDataNodeMap.find( input );
239 
240  if ( itP != m_dataPathToDataNodeMap.end() ) dataNode = getDataNode( input );
241 
242  if ( dataNode ) {
243  dataNode->addConsumerNode( algo.second );
244  algo.second->addInputDataNode( dataNode );
245  ON_DEBUG
246  { // Mirror the action above in the BGL-based graph
247  boost::add_edge( node( input.fullKey() ), node( algo.second->getNodeName() ), m_PRGraph );
248  }
249  }
250  }
251  }
252 
253  return global_sc;
254  }
255 
256  //---------------------------------------------------------------------------
257  StatusCode PrecedenceRulesGraph::addAlgorithmNode( Algorithm* algo, const std::string& parentName, bool inverted,
258  bool allPass )
259  {
260 
262 
263  // Create new, or fetch existent, AlgorithmNode
264  auto& algoName = algo->name();
265  auto itA = m_algoNameToAlgoNodeMap.find( algoName );
266  concurrency::AlgorithmNode* algoNode;
267  if ( itA != m_algoNameToAlgoNodeMap.end() ) {
268  algoNode = itA->second;
269  } else {
270  algoNode = new concurrency::AlgorithmNode( *this, algo, m_nodeCounter, m_algoCounter, inverted, allPass );
271  ON_DEBUG
272  { // Mirror the action above in the BGL-based graph
273  auto source =
274  boost::add_vertex( AlgoProps( algo, m_nodeCounter, m_algoCounter, inverted, allPass ), m_PRGraph );
275  boost::add_edge( source, node( parentName ), m_PRGraph );
276  }
277  ++m_nodeCounter;
278  ++m_algoCounter;
279  m_algoNameToAlgoNodeMap[algoName] = algoNode;
280  ON_VERBOSE verbose() << "AlgoNode " << algoName << " added @ " << algoNode << endmsg;
281  registerIODataObjects( algo );
282  }
283 
284  // Attach AlgorithmNode to its CF decision hub
285  auto itP = m_decisionNameToDecisionHubMap.find( parentName );
286  if ( itP != m_decisionNameToDecisionHubMap.end() ) {
287  auto parentNode = itP->second;
288  ON_VERBOSE verbose() << "Attaching AlgorithmNode '" << algo->name() << "' to DecisionNode '" << parentName << "'"
289  << endmsg;
290 
291  parentNode->addDaughterNode( algoNode );
292  algoNode->addParentNode( parentNode );
293  } else {
294  sc = StatusCode::FAILURE;
295  error() << "Requested DecisionNode '" << parentName << "' was not found" << endmsg;
296  }
297 
298  return sc;
299  }
300 
301  //---------------------------------------------------------------------------
303  {
304 
305  return m_algoNameToAlgoNodeMap.at( algoName );
306  }
307 
308  //---------------------------------------------------------------------------
310  {
311 
312  StatusCode sc;
313 
314  auto itD = m_dataPathToDataNodeMap.find( dataPath );
315  concurrency::DataNode* dataNode;
316  if ( itD != m_dataPathToDataNodeMap.end() ) {
317  dataNode = itD->second;
318  sc = StatusCode::SUCCESS;
319  } else {
320  if ( !m_conditionsRealmEnabled ) {
321  dataNode = new concurrency::DataNode( *this, dataPath );
322  ON_VERBOSE verbose() << " DataNode for " << dataPath << " added @ " << dataNode << endmsg;
323  } else {
324  SmartIF<ICondSvc> condSvc{serviceLocator()->service( "CondSvc", false )};
325  if ( condSvc->isRegistered( dataPath ) ) {
326  dataNode = new concurrency::ConditionNode( *this, dataPath, condSvc );
327  ON_VERBOSE verbose() << " ConditionNode for " << dataPath << " added @ " << dataNode << endmsg;
328  } else {
329  dataNode = new concurrency::DataNode( *this, dataPath );
330  ON_VERBOSE verbose() << " DataNode for " << dataPath << " added @ " << dataNode << endmsg;
331  }
332  }
333 
334  m_dataPathToDataNodeMap[dataPath] = dataNode;
335 
336  sc = StatusCode::SUCCESS;
337  ON_DEBUG
338  { // Mirror the action above in the BGL-based graph
339  boost::add_vertex( DataProps( dataPath ), m_PRGraph );
340  }
341  }
342 
343  return sc;
344  }
345 
346  //---------------------------------------------------------------------------
348  {
349 
350  return m_dataPathToDataNodeMap.at( dataPath );
351  }
352 
353  //---------------------------------------------------------------------------
355  bool modeConcurrent, bool modePromptDecision, bool modeOR,
356  bool allPass )
357  {
358 
360 
361  auto& decisionHubName = decisionHubAlgo->name();
362 
363  auto itP = m_decisionNameToDecisionHubMap.find( parentName );
364  concurrency::DecisionNode* parentNode;
365  if ( itP != m_decisionNameToDecisionHubMap.end() ) {
366  parentNode = itP->second;
367  auto itA = m_decisionNameToDecisionHubMap.find( decisionHubName );
368  concurrency::DecisionNode* decisionHubNode;
369  if ( itA != m_decisionNameToDecisionHubMap.end() ) {
370  decisionHubNode = itA->second;
371  } else {
372  decisionHubNode = new concurrency::DecisionNode( *this, m_nodeCounter, decisionHubName, modeConcurrent,
373  modePromptDecision, modeOR, allPass );
374  m_decisionNameToDecisionHubMap[decisionHubName] = decisionHubNode;
375 
376  ON_DEBUG
377  { // Mirror the action above in the BGL-based graph
378  auto source = boost::add_vertex(
379  DecisionHubProps( decisionHubName, m_nodeCounter, modeConcurrent, modePromptDecision, modeOR, allPass ),
380  m_PRGraph );
381  boost::add_edge( source, node( parentName ), m_PRGraph );
382  }
383 
384  ++m_nodeCounter;
385 
386  ON_VERBOSE verbose() << "Decision hub node " << decisionHubName << " added @ " << decisionHubNode << endmsg;
387  }
388 
389  parentNode->addDaughterNode( decisionHubNode );
390  decisionHubNode->addParentNode( parentNode );
391  } else {
392  sc = StatusCode::FAILURE;
393  error() << "Decision hub node " << parentName << ", requested to be parent, is not registered." << endmsg;
394  }
395 
396  return sc;
397  }
398 
399  //---------------------------------------------------------------------------
400  void PrecedenceRulesGraph::addHeadNode( const std::string& headName, bool modeConcurrent, bool modePromptDecision,
401  bool modeOR, bool allPass )
402  {
403 
404  auto itH = m_decisionNameToDecisionHubMap.find( headName );
405  if ( itH != m_decisionNameToDecisionHubMap.end() ) {
406  m_headNode = itH->second;
407  } else {
408  m_headNode = new concurrency::DecisionNode( *this, m_nodeCounter, headName, modeConcurrent, modePromptDecision,
409  modeOR, allPass );
410  m_decisionNameToDecisionHubMap[headName] = m_headNode;
411 
412  ON_DEBUG
413  { // Mirror the action above in the BGL-based graph
414  boost::add_vertex(
415  DecisionHubProps( headName, m_nodeCounter, modeConcurrent, modePromptDecision, modeOR, allPass ),
416  m_PRGraph );
417  }
418 
419  ++m_nodeCounter;
420  }
421  }
422 
423  //---------------------------------------------------------------------------
425  {
426 
427  PRVertexDesc target{};
428 
429  for ( auto vp = vertices( m_PRGraph ); vp.first != vp.second; ++vp.first ) {
430  PRVertexDesc v = *vp.first;
431  if ( boost::apply_visitor( precedence::VertexName(), m_PRGraph[v] ) == name ) {
432  target = v;
433  break;
434  }
435  }
436 
437  return target;
438  }
439 
440  //---------------------------------------------------------------------------
441  void PrecedenceRulesGraph::accept( const std::string& algo_name, IGraphVisitor& visitor ) const
442  {
443  getAlgorithmNode( algo_name )->accept( visitor );
444  }
445 
446  //---------------------------------------------------------------------------
448  {
449 
450  info() << "Starting ranking by data outputs .. " << endmsg;
451  for ( auto& pair : m_algoNameToAlgoNodeMap ) {
452  ON_DEBUG debug() << " Ranking " << pair.first << "... " << endmsg;
453  pair.second->accept( ranker );
454  ON_DEBUG debug() << " ... rank of " << pair.first << ": " << pair.second->getRank() << endmsg;
455  }
456  }
457 
459  {
460  std::ostringstream ost;
461  dumpControlFlow( ost, m_headNode, 0 );
462  return ost.str();
463  }
464 
465  void PrecedenceRulesGraph::dumpControlFlow( std::ostringstream& ost, ControlFlowNode* node, const int& indent ) const
466  {
467  ost << std::string( indent * 2, ' ' );
468  DecisionNode* dn = dynamic_cast<DecisionNode*>( node );
469  AlgorithmNode* an = dynamic_cast<AlgorithmNode*>( node );
470  if ( dn != 0 ) {
471  if ( node != m_headNode ) {
472  ost << node->getNodeName() << " [Seq] ";
473  ost << ( ( dn->m_modeConcurrent ) ? " [Concurrent] " : " [Sequential] " );
474  ost << ( ( dn->m_modePromptDecision ) ? " [Prompt] " : "" );
475  ost << ( ( dn->m_modeOR ) ? " [OR] " : "" );
476  ost << ( ( dn->m_allPass ) ? " [PASS] " : "" );
477  ost << "\n";
478  }
479  const std::vector<ControlFlowNode*>& dth = dn->getDaughters();
480  for ( std::vector<ControlFlowNode*>::const_iterator itr = dth.begin(); itr != dth.end(); ++itr ) {
481  dumpControlFlow( ost, *itr, indent + 1 );
482  }
483  } else if ( an != 0 ) {
484  ost << node->getNodeName() << " [Alg] ";
485  if ( an != 0 ) {
486  auto ar = an->getAlgorithm();
487  ost << " [n= " << ar->cardinality() << "]";
488  ost << ( ( !ar->isClonable() ) ? " [unclonable] " : "" );
489  }
490  ost << "\n";
491  }
492  }
493 
494  //---------------------------------------------------------------------------
496  {
497 
498  const char idt[] = " ";
499  std::ostringstream ost;
500 
501  ost << "\n" << idt << "====================================\n";
502  ost << idt << "Data origins and destinations:\n";
503  ost << idt << "====================================\n";
504 
505  for ( auto& pair : m_dataPathToDataNodeMap ) {
506 
507  for ( auto algoNode : pair.second->getProducers() ) ost << idt << " " << algoNode->getNodeName() << "\n";
508 
509  ost << idt << " V\n";
510  ost << idt << " o " << pair.first << "\n";
511  ost << idt << " V\n";
512 
513  for ( auto algoNode : pair.second->getConsumers() ) ost << idt << " " << algoNode->getNodeName() << "\n";
514 
515  ost << idt << "====================================\n";
516  }
517 
518  return ost.str();
519  }
520 
521  //---------------------------------------------------------------------------
522 
524  {
525  boost::filesystem::ofstream myfile;
526  myfile.open( fileName, std::ios::app );
527 
528  // Declare properties to dump
529  boost::dynamic_properties dp;
530 
531  using boost::make_transform_value_property_map;
532  using boost::apply_visitor;
533  using boost::get;
534  using boost::vertex_bundle;
535 
536  dp.property( "Entity", make_transform_value_property_map(
537  []( VariantVertexProps const& v ) { return boost::lexical_cast<std::string>( v ); },
538  get( vertex_bundle, m_PRGraph ) ) );
539 
540  dp.property( "Name", make_transform_value_property_map(
541  []( VariantVertexProps const& v ) { return apply_visitor( precedence::VertexName(), v ); },
542  get( vertex_bundle, m_PRGraph ) ) );
543 
544  dp.property( "Mode", make_transform_value_property_map(
545  []( VariantVertexProps const& v ) { return apply_visitor( precedence::GroupMode(), v ); },
546  get( vertex_bundle, m_PRGraph ) ) );
547 
548  dp.property( "Logic",
549  make_transform_value_property_map(
550  []( VariantVertexProps const& v ) { return apply_visitor( precedence::GroupLogic(), v ); },
551  get( vertex_bundle, m_PRGraph ) ) );
552 
553  dp.property( "Decision Negation",
554  make_transform_value_property_map(
555  []( VariantVertexProps const& v ) { return apply_visitor( precedence::DecisionNegation(), v ); },
556  get( vertex_bundle, m_PRGraph ) ) );
557 
558  dp.property( "Negative Decision Inversion",
559  make_transform_value_property_map(
560  []( VariantVertexProps const& v ) { return apply_visitor( precedence::AllPass(), v ); },
561  get( vertex_bundle, m_PRGraph ) ) );
562 
563  dp.property( "Exit Policy",
564  make_transform_value_property_map(
565  []( VariantVertexProps const& v ) { return apply_visitor( precedence::GroupExit(), v ); },
566  get( vertex_bundle, m_PRGraph ) ) );
567 
568  dp.property( "Operations",
569  make_transform_value_property_map(
570  []( VariantVertexProps const& v ) { return apply_visitor( precedence::Operations(), v ); },
571  get( vertex_bundle, m_PRGraph ) ) );
572 
573  dp.property( "CF Decision", make_transform_value_property_map(
574  [&slot]( VariantVertexProps const& v ) {
575  return apply_visitor( precedence::CFDecision( slot ), v );
576  },
577  get( vertex_bundle, m_PRGraph ) ) );
578 
579  dp.property( "Algorithm State", make_transform_value_property_map(
580  [&slot]( VariantVertexProps const& v ) {
581  return apply_visitor( precedence::FSMState( slot ), v );
582  },
583  get( vertex_bundle, m_PRGraph ) ) );
584 
585  SmartIF<ITimelineSvc> timelineSvc = m_svcLocator->service<ITimelineSvc>( "TimelineSvc", false );
586  if ( timelineSvc.isValid() ) {
587  dp.property( "Start Time (epoch ns)", make_transform_value_property_map(
588  [&timelineSvc]( VariantVertexProps const& v ) {
589  return apply_visitor( precedence::StartTime( timelineSvc ), v );
590  },
591  get( vertex_bundle, m_PRGraph ) ) );
592  dp.property( "End Time (epoch ns)", make_transform_value_property_map(
593  [&timelineSvc]( VariantVertexProps const& v ) {
594  return apply_visitor( precedence::EndTime( timelineSvc ), v );
595  },
596  get( vertex_bundle, m_PRGraph ) ) );
597  dp.property( "Runtime (ns)", make_transform_value_property_map(
598  [&timelineSvc]( VariantVertexProps const& v ) {
599  return apply_visitor( precedence::Duration( timelineSvc ), v );
600  },
601  get( vertex_bundle, m_PRGraph ) ) );
602  } else {
603  warning() << "Failed to get the TimelineSvc, timing will not be added to "
604  << "the task precedence rules dump" << endmsg;
605  }
606 
607  boost::write_graphml( myfile, m_PRGraph, dp );
608 
609  myfile.close();
610  }
611 
612  //---------------------------------------------------------------------------
614  {
615  boost::filesystem::ofstream myfile;
616  myfile.open( fileName, std::ios::app );
617 
618  // Fill runtimes (as this could not be done on the fly during trace assembling)
619  SmartIF<ITimelineSvc> timelineSvc = m_svcLocator->service<ITimelineSvc>( "TimelineSvc", false );
620  if ( !timelineSvc.isValid() ) {
621  warning() << "Failed to get the TimelineSvc, timing will not be added to "
622  << "the task precedence trace dump" << endmsg;
623  } else {
624 
625  typedef boost::graph_traits<precedence::PRGraph>::vertex_iterator vertex_iter;
627  for ( vp = vertices( m_precTrace ); vp.first != vp.second; ++vp.first ) {
628  TimelineEvent te{};
629  te.algorithm = m_precTrace[*vp.first].m_name;
630  timelineSvc->getTimelineEvent( te );
631  int runtime = std::chrono::duration_cast<std::chrono::nanoseconds>( te.end - te.start ).count();
632  m_precTrace[*vp.first].m_runtime = runtime;
633  }
634  }
635 
636  // Declare properties to dump
637  boost::dynamic_properties dp;
638  using boost::get;
640  dp.property( "Name", get( &AlgoTraceProps::m_name, m_precTrace ) );
641  dp.property( "Rank", get( &AlgoTraceProps::m_rank, m_precTrace ) );
642  dp.property( "Runtime", get( &AlgoTraceProps::m_runtime, m_precTrace ) );
643 
644  boost::write_graphml( myfile, m_precTrace, dp );
645 
646  myfile.close();
647  }
648 
650  {
651 
652  std::string u_name = u == nullptr ? "ENTRY" : u->getNodeName();
653  std::string v_name = v->getNodeName();
654 
656 
657  if ( u == nullptr ) {
658  auto itT = m_prec_trace_map.find( "ENTRY" );
659  if ( itT != m_prec_trace_map.end() ) {
660  source = itT->second;
661  } else {
662  source = boost::add_vertex( precedence::AlgoTraceProps( "ENTRY", -1, -1, -1.0 ), m_precTrace );
663  m_prec_trace_map["ENTRY"] = source;
664  }
665  } else {
666  auto itS = m_prec_trace_map.find( u_name );
667  if ( itS != m_prec_trace_map.end() ) {
668  source = itS->second;
669  } else {
670 
671  source =
672  boost::add_vertex( precedence::AlgoTraceProps( u_name, u->getAlgoIndex(), u->getRank(), -1 ), m_precTrace );
673  m_prec_trace_map[u_name] = source;
674  }
675  }
676 
678 
679  auto itP = m_prec_trace_map.find( v_name );
680  if ( itP != m_prec_trace_map.end() ) {
681  target = itP->second;
682  } else {
683 
684  target =
685  boost::add_vertex( precedence::AlgoTraceProps( v_name, v->getAlgoIndex(), v->getRank(), -1 ), m_precTrace );
686  m_prec_trace_map[v_name] = target;
687  }
688 
689  boost::add_edge( source, target, m_precTrace );
690 
691  ON_DEBUG debug() << u_name << "-->" << v_name << " precedence trait added" << endmsg;
692  }
693 
694 } // namespace
PRVertexDesc node(const std::string &) const
BGL-based facilities.
const unsigned int & getAlgoIndex() const
Get algorithm index.
StatusCode addAlgorithmNode(Algorithm *daughterAlgo, const std::string &parentName, bool inverted, bool allPass)
Add algorithm node.
const std::string & name() const override
The identifying name of the algorithm object.
Definition: Algorithm.cpp:731
void addDaughterNode(ControlFlowNode *node)
Add a daughter node.
boost::graph_traits< PrecTrace >::vertex_descriptor AlgoTraceVertex
boost::graph_traits< PRGraph >::vertex_descriptor PRVertexDesc
const DataObjIDColl & outputDataObjs() const override
bool isSuccess() const
Test for a status code of SUCCESS.
Definition: StatusCode.h:50
virtual bool visit(DecisionNode &)
Definition: IGraphVisitor.h:18
void dumpPrecRules(const boost::filesystem::path &, const EventSlot &slot)
dump to file the precedence rules
T endl(T...args)
StatusCode addDecisionHubNode(Algorithm *daughterAlgo, const std::string &parentName, bool modeConcurrent, bool modePromptDecision, bool modeOR, bool allPass)
Add a node, which aggregates decisions of direct daughter nodes.
std::vector< DecisionNode * > m_parents
Control flow parents of an AlgorithmNode (DecisionNodes)
void addHeadNode(const std::string &headName, bool modeConcurrent, bool modePromptDecision, bool modeOR, bool allPass)
Add a node, which has no parents.
std::string algorithm
Definition: ITimelineSvc.h:18
std::string stateToString(const int &stateId) const
Translation between state id and name.
T duration_cast(T...args)
T end(T...args)
StatusCode addDataNode(const DataObjID &dataPath)
Add DataNode that represents DataObject.
AlgorithmNode * getAlgorithmNode(const std::string &algoName) const
Get the AlgorithmNode from by algorithm name using graph index.
void rankAlgorithms(IGraphVisitor &ranker) const
Rank Algorithm nodes by the number of data outputs.
#define ON_DEBUG
bool m_allPass
Whether always passing regardless of daughter results.
const std::vector< DecisionNode * > & getParentDecisionHubs() const
Get all parent decision hubs.
T remove(T...args)
virtual bool visitEnter(DecisionNode &) const
Definition: IGraphVisitor.h:17
STL class.
Algorithm * getAlgorithm() const
get Algorithm representatives
virtual void getTimelineEvent(TimelineEvent &) const =0
bool m_modeOR
Whether acting as "and" (false) or "or" node (true)
void addInputDataNode(DataNode *node)
Associate an AlgorithmNode, which is a data consumer of this one.
bool accept(IGraphVisitor &visitor) override
Visitor entry point.
StatusCode initialize()
Initialize graph.
void dumpPrecTrace(const boost::filesystem::path &)
dump to file the precedence trace
const float & getRank() const
Get Algorithm rank.
boost::variant< AlgoProps, DecisionHubProps, DataProps > VariantVertexProps
The AlgsExecutionStates encodes the state machine for the execution of algorithms within a single eve...
virtual const std::set< IAlgorithm * > & condAlgs() const =0
get list of all registered condition Algorithms
This class is used for returning status codes from appropriate routines.
Definition: StatusCode.h:26
const DataObjIDColl & inputDataObjs() const override
std::string dumpDataFlow() const
Print out all data origins and destinations, as reflected in the EF graph.
const std::vector< ControlFlowNode * > & getDaughters() const
Get children nodes.
void accept(const std::string &algo_name, IGraphVisitor &visitor) const
A method to update algorithm node decision, and propagate it upwards.
DataNode * getDataNode(const DataObjID &dataPath) const
Get DataNode by DataObject path using graph index.
bool m_modePromptDecision
Whether to evaluate the hub decision ASA its child decisions allow to do that.
void addEdgeToPrecTrace(const AlgorithmNode *u, const AlgorithmNode *v)
set cause-effect connection between two algorithms in the precedence trace
void addOutputDataNode(DataNode *node)
Associate an AlgorithmNode, which is a data supplier for this one.
Base class from which all concrete algorithm classes should be derived.
Definition: Algorithm.h:79
T find(T...args)
std::vector< InputHandle_t< In > > m_inputs
void addParentNode(DecisionNode *node)
Add a parent node.
bool isValid() const
Allow for check if smart pointer is valid.
Definition: SmartIF.h:68
T begin(T...args)
void registerIODataObjects(const Algorithm *algo)
Register algorithm in the Data Dependency index.
bool m_modeConcurrent
Whether all daughters will be evaluated concurrently or sequentially.
void printState(std::stringstream &output, AlgsExecutionStates &states, const std::vector< int > &node_decisions, const unsigned int &recursionLevel) const override
Print a string representing the control flow state.
Class representing the event slot.
Definition: EventSlot.h:11
void addParentNode(DecisionNode *node)
Add a parent node.
bool accept(IGraphVisitor &visitor) override
Visitor entry point.
const std::string & getNodeName() const
Get node name.
#define ON_VERBOSE
void printState(std::stringstream &output, AlgsExecutionStates &states, const std::vector< int > &node_decisions, const unsigned int &recursionLevel) const override
Print a string representing the control flow state.
StatusCode buildDataDependenciesRealm()
Build data dependency realm WITH data object nodes participating.
std::string dumpControlFlow() const
Print out control flow of Algorithms and Sequences.
~DecisionNode() override
Destructor.
MsgStream & endmsg(MsgStream &s)
MsgStream Modifier: endmsg. Calls the output method of the MsgStream.
Definition: MsgStream.h:209
static std::map< State, std::string > stateNames
void addConsumerNode(AlgorithmNode *node)
Add relationship to consumer AlgorithmNode.