14 #  pragma warning( disable : 2259 ) 
   20 #  pragma warning( disable : 4996 ) 
   34   auto p = 
new Histogram1D( 
new TH1D( title.
c_str(), title.
c_str(), nBins, xlow, xup ) );
 
   41   auto p = 
new Histogram1D( 
new TH1D( title.
c_str(), title.
c_str(), e.size() - 1, &e.front() ) );
 
   47                                                               const AIDA::IHistogram1D& hist ) {
 
   48   TH1D* 
h = getRepresentation<AIDA::IHistogram1D, TH1D>( hist );
 
   49   auto  n = ( 
h ? 
new Histogram1D( 
new TH1D( *
h ) ) : 
nullptr );
 
   58     if ( className == 
"AIDA::IHistogram1D" ) 
return const_cast<AIDA::IHistogram1D*
>( (AIDA::IHistogram1D*)
this );
 
   59     if ( className == 
"AIDA::IHistogram" ) 
return const_cast<AIDA::IHistogram*
>( (AIDA::IHistogram*)
this );
 
   65     if ( binHeight( 
index ) <= 0 ) 
return 0;
 
   66     double xx = binHeight( 
index ) / binError( 
index );
 
   67     return int( xx * xx + 0.5 );
 
   72     TH1D* imp = 
dynamic_cast<TH1D*
>( rep );
 
   73     if ( !imp ) 
throw std::runtime_error( 
"Cannot adopt native histogram representation." );
 
   82   init( m_rep->GetTitle() );
 
   87   m_classType = 
"IHistogram1D";
 
   88   if ( initialize_axis ) { m_axis.initialize( m_rep->GetXaxis(), 
false ); }
 
   89   const TArrayD* a = m_rep->GetSumw2();
 
   90   if ( !a || ( a && a->GetSize() == 0 ) ) m_rep->Sumw2();
 
   92   m_rep->SetDirectory( 
nullptr );
 
  100   for ( 
int i = 1, 
n = m_rep->GetNbinsX(); i <= 
n; ++i ) {
 
  101     m_sumwx += m_rep->GetBinContent( i ) * m_rep->GetBinCenter( i );
 
  102     m_sumEntries += m_rep->GetBinContent( i );
 
  109   return Base::reset();
 
  116     init( m_rep->GetTitle() );
 
  122   m_rep->SetBinContent( rIndex( i ), height );
 
  123   m_rep->SetBinError( rIndex( i ), error );
 
  125   if ( i != AIDA::IAxis::UNDERFLOW_BIN && i != AIDA::IAxis::OVERFLOW_BIN ) m_sumwx += centre * height;
 
  126   m_sumEntries += entries;
 
  131   m_rep->SetEntries( m_sumEntries );
 
  134   stat[0] = sumBinHeights();
 
  137     stat[1] = ( sumBinHeights() * sumBinHeights() ) / equivalentBinEntries();
 
  141   stat[3] = ( mean * mean + rms * rms ) * sumBinHeights();
 
  142   m_rep->PutStats( &stat.
front() );
 
  148   m_rep->SetEntries( allEntries );
 
  152   stat[0] = sumBinHeights();
 
  156     stat[1] = ( sumBinHeights() * sumBinHeights() ) / eqBinEntries;
 
  158   stat[2] = mean * sumBinHeights();
 
  160   stat[3] = ( mean * mean + rms * rms ) * sumBinHeights();
 
  161   m_rep->PutStats( &stat.
front() );
 
  167   auto guard = std::scoped_lock{ m_fillSerialization };
 
  168   m_rep->Fill( x, weight );
 
  175   if ( 
h.axis().isFixedBinning() ) {
 
  177         new TH1D( title.
c_str(), title.
c_str(), 
h.axis().bins(), 
h.axis().lowerEdge(), 
h.axis().upperEdge() ) );
 
  180     for ( 
int i = 0; i < 
h.axis().bins(); ++i ) { e.
push_back( 
h.axis().binLowerEdge( i ) ); }
 
  182     e.push_back( 
h.axis().upperEdge() );
 
  183     m_rep.reset( 
new TH1D( title.
c_str(), title.
c_str(), e.size() - 1, &e.front() ) );
 
  185   m_axis.initialize( m_rep->GetXaxis(), 
false );
 
  190   double sumw = 
h.sumBinHeights();
 
  194     sumw2 = ( sumw * sumw ) / 
h.equivalentBinEntries();
 
  196   double sumwx  = 
h.mean() * 
h.sumBinHeights();
 
  197   double sumwx2 = ( 
h.mean() * 
h.mean() + 
h.rms() * 
h.rms() ) * 
h.sumBinHeights();
 
  200   for ( 
int i = -2; i < axis().bins(); ++i ) {
 
  202     m_rep->SetBinContent( rIndex( i ), 
h.binHeight( i ) );
 
  203     m_rep->SetBinError( rIndex( i ), 
h.binError( i ) );
 
  207   m_rep->SetEntries( 
h.allEntries() );
 
  214   m_rep->PutStats( &stat.
front() );
 
  222   for ( 
int j = 0; 
j < 
size; 
j++ ) {
 
  225     if ( !annotation().addItem( 
key, value ) ) { annotation().setValue( 
key, value ); };
 
  226     if ( 
"Title" == 
key ) { title = value; }
 
  228   double lowerEdge, upperEdge, binHeight, binError;
 
  229   int    isFixedBinning, bins;
 
  230   s >> isFixedBinning >> bins;
 
  232   if ( isFixedBinning ) {
 
  233     s >> lowerEdge >> upperEdge;
 
  234     m_rep.reset( 
new TH1D( title.
c_str(), title.
c_str(), bins, lowerEdge, upperEdge ) );
 
  238     for ( 
int i = 0; i <= bins; ++i ) s >> edges[i];
 
  239     m_rep.reset( 
new TH1D( title.
c_str(), title.
c_str(), edges.size() - 1, &edges.front() ) );
 
  241   m_axis.initialize( m_rep->GetXaxis(), 
true );
 
  246   for ( 
int i = 0; i <= bins + 1; ++i ) {
 
  247     s >> binHeight >> binError;
 
  248     m_rep->SetBinContent( i, binHeight );
 
  249     m_rep->SetBinError( i, binError );
 
  253   m_rep->SetEntries( allEntries );
 
  255   s >> stats[0] >> stats[1] >> stats[2] >> stats[3];
 
  256   m_rep->PutStats( stats );
 
  262   s << static_cast<int>( annotation().
size() );
 
  263   for ( 
int i = 0; i < annotation().size(); i++ ) {
 
  264     s << annotation().key( i );
 
  265     s << annotation().value( i );
 
  267   const AIDA::IAxis& axis( this->axis() );
 
  268   const int          isFixedBinning = axis.isFixedBinning();
 
  269   const int          bins           = axis.bins();
 
  270   s << isFixedBinning << bins;
 
  271   if ( isFixedBinning ) {
 
  272     s << axis.lowerEdge();
 
  274     for ( 
int i = 0; i < bins; ++i ) 
s << axis.binLowerEdge( i );
 
  276   s << axis.upperEdge();
 
  277   for ( 
int i = 0; i <= bins + 1; ++i ) 
s << m_rep->GetBinContent( i ) << m_rep->GetBinError( i );
 
  279   s << m_rep->GetEntries();
 
  281   m_rep->GetStats( stats );
 
  282   s << stats[0] << stats[1] << stats[2] << stats[3];