Gaudi Framework, version v23r5

Home   Generated: Wed Nov 28 2012
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Macros Groups Pages
Public Types | Public Member Functions | Protected Member Functions | Private Member Functions | Private Attributes | List of all members
Genfun::GaudiMathImplementation::NumericalDerivative Class Reference

Numerical derivative (using GSL adaptive numerical differentiation) More...

#include <NumericalDerivative.h>

Inheritance diagram for Genfun::GaudiMathImplementation::NumericalDerivative:
Inheritance graph
[legend]
Collaboration diagram for Genfun::GaudiMathImplementation::NumericalDerivative:
Collaboration graph
[legend]

Public Types

enum  Type { Central, Forward, Backward }
 the type of numerical differentiation More...
 

Public Member Functions

 NumericalDerivative (const AbsFunction &function, const size_t index, const Type &type=Central)
 From CLHEP/GenericFunctions.
 
 NumericalDerivative (const NumericalDerivative &right)
 copy constructor
 
virtual ~NumericalDerivative ()
 virtual destructor
 
virtual unsigned int dimensionality () const
 dimensionality of the problem
 
virtual double operator() (double argument) const
 Function value.
 
virtual double operator() (const Argument &argument) const
 Function value.
 
virtual bool hasAnalyticDerivative () const
 Does this function have an analytic derivative?
 
virtual Derivative partial (unsigned int index) const
 Derivatives.
 
const AbsFunction & function () const
 access to the function itself
 
size_t index () const
 index
 
const Typetype () const
 type
 
const TypesetType (const Type &value)
 change the type of the adaptive differentiation
 
double result () const
 the result of the last call
 
double error () const
 the absolute error estimate for the last call
 

Protected Member Functions

StatusCode Exception (const std::string &message, const StatusCode &sc=StatusCode::FAILURE) const
 Exception.
 

Private Member Functions

 NumericalDerivative ()
 
NumericalDerivativeoperator= (const NumericalDerivative &)
 

Private Attributes

const AbsFunction * m_function
 
size_t m_index
 
size_t m_DIM
 
Type m_type
 
Argument m_argument
 
double m_result
 
double m_error
 

Detailed Description

Numerical derivative (using GSL adaptive numerical differentiation)

\[ {\mathcal{F}}_i \left(x_1, \dots , x_{i-1}, x_i , x_{i+1}, \dots , x_n \right) = \frac{\partial}{\partial x_i} f \left(x_1, \dots , x_{i-1}, x_i , x_{i+1}, \dots , x_n \right) \]

Author
Vanya BELYAEV Ivan..nosp@m.Bely.nosp@m.aev@i.nosp@m.tep..nosp@m.ru
Date
2003-08-27

Definition at line 36 of file NumericalDerivative.h.

Member Enumeration Documentation

the type of numerical differentiation

Enumerator:
Central 
Forward 
Backward 

Definition at line 40 of file NumericalDerivative.h.

Constructor & Destructor Documentation

Genfun::GaudiMathImplementation::NumericalDerivative::NumericalDerivative ( const AbsFunction &  function,
const size_t  index,
const Type type = Central 
)

From CLHEP/GenericFunctions.

from CLHEP/GenericFunctions

The standard constructor from AbsFunction and the index of the variable

The function, created with this constructor compute the numerical derivatived by finite differencing,. An adaptive algorithm is used to find teh best choice of finite difference and to estimate the error in derivative

\[ {\mathcal{F}}_i \left(x_1, \dots , x_{i-1}, x_i , x_{i+1}, \dots , x_n \right) = \frac{\partial}{\partial x_i} f \left(x_1, \dots , x_{i-1}, x_i , x_{i+1}, \dots , x_n \right) \]

  • The central difference algorithm gsl_diff_central is used for type = Type::Central
  • The forward difference algorithm gsl_diff_forward is used for type = Type::Forward. The function is evaluated only at points greater than x_i and x_i itself. This function should be used if f(x) has a singularity or if it is undefined for values less than x_i
  • The backward difference algorithm gsl_diff_backward is used for type = Type::Backward. The function is evaluated only at points smaller than x_i and x_i itself. This function should be used if f(x) has a singularity or if it is undefined for values greater than x_i

The adaptime numerical differentiation is used

Parameters
functionthe function
indexthe variable index

The standard constructor from AbsFunction and the index of the variable

Parameters
functionthe function
indexthe variable index

Definition at line 53 of file NumericalDerivative.cpp.

: AbsFunction ()
, m_function ( function.clone() )
, m_index ( index )
, m_DIM ( function.dimensionality() )
, m_type ( type )
, m_argument ( function.dimensionality() )
, m_result ( GSL_NEGINF )
, m_error ( GSL_POSINF )
{
if( m_index >= m_DIM )
{ Exception ( "::constructor invalid variable index " ) ; };
}
Genfun::GaudiMathImplementation::NumericalDerivative::NumericalDerivative ( const NumericalDerivative right)

copy constructor

Definition at line 74 of file NumericalDerivative.cpp.

: AbsFunction ()
, m_function ( right.m_function->clone() )
, m_index ( right.m_index )
, m_DIM ( right.m_DIM )
, m_type ( right.m_type )
, m_argument ( right.m_DIM )
, m_result ( GSL_NEGINF )
, m_error ( GSL_POSINF )
{}
Genfun::GaudiMathImplementation::NumericalDerivative::~NumericalDerivative ( )
virtual

virtual destructor

destructor

Definition at line 89 of file NumericalDerivative.cpp.

{ if( 0 != m_function ) { delete m_function ; m_function = 0 ; } }
Genfun::GaudiMathImplementation::NumericalDerivative::NumericalDerivative ( )
private

Member Function Documentation

virtual unsigned int Genfun::GaudiMathImplementation::NumericalDerivative::dimensionality ( ) const
inlinevirtual

dimensionality of the problem

Definition at line 98 of file NumericalDerivative.h.

{ return m_DIM ; }
double Genfun::GaudiMathImplementation::NumericalDerivative::error ( ) const
inline

the absolute error estimate for the last call

Definition at line 126 of file NumericalDerivative.h.

{ return m_error ; }
StatusCode Genfun::GaudiMathImplementation::NumericalDerivative::Exception ( const std::string message,
const StatusCode sc = StatusCode::FAILURE 
) const
protected

Exception.

Definition at line 183 of file NumericalDerivative.cpp.

{
throw GaudiException( "NumericalDerivative" + message ,
"*GaudiMath*" , sc ) ;
return sc ;
}
const AbsFunction& Genfun::GaudiMathImplementation::NumericalDerivative::function ( ) const
inline

access to the function itself

Definition at line 114 of file NumericalDerivative.h.

{ return *m_function ; }
virtual bool Genfun::GaudiMathImplementation::NumericalDerivative::hasAnalyticDerivative ( ) const
inlinevirtual

Does this function have an analytic derivative?

Definition at line 106 of file NumericalDerivative.h.

{ return true ;}
size_t Genfun::GaudiMathImplementation::NumericalDerivative::index ( ) const
inline

index

Definition at line 116 of file NumericalDerivative.h.

{ return m_index ; }
double Genfun::GaudiMathImplementation::NumericalDerivative::operator() ( double  argument) const
virtual

Function value.

Definition at line 164 of file NumericalDerivative.cpp.

{
// reset the result and the error
m_result = GSL_NEGINF ;
m_error = GSL_POSINF ;
// check the argument
if( 1 != m_DIM ) { Exception ( "operator(): invalid argument size " ); }
Argument arg(1) ;
arg[0] = argument ;
return (*this)( arg ) ;
}
double Genfun::GaudiMathImplementation::NumericalDerivative::operator() ( const Argument &  argument) const
virtual

Function value.

copy the argument

use GSL to evaluate the numerical derivative

Definition at line 118 of file NumericalDerivative.cpp.

{
// reset the result and the error
m_result = GSL_NEGINF ;
m_error = GSL_POSINF ;
// check the argument
if( argument.dimension() != m_DIM )
{ Exception ( "::operator():invalid argument size" ) ; };
{for( size_t i = 0 ; i < m_DIM ; ++i ){ m_argument[i] = argument[i];}}
// create the helper object
GSL_Helper helper( *m_function , m_argument , m_index );
gsl_function F ;
F.function = &GSL_Adaptor ;
F.params = &helper ;
double x = argument[m_index];
int ierrno = 0 ;
switch ( type() )
{
case Central :
ierrno = gsl_diff_central ( &F , x , &m_result , &m_error ) ; break ;
case Forward :
ierrno = gsl_diff_forward ( &F , x , &m_result , &m_error ) ; break ;
case Backward :
ierrno = gsl_diff_backward ( &F , x , &m_result , &m_error ) ; break ;
default:
Exception ( "::operator(): invalid diffrentiation type " ) ;
}
if( ierrno )
{ gsl_error ( " NumericalDerivative:: the error from gsl_diff_XXXX" ,
__FILE__ , __LINE__ , ierrno ) ; }
return result() ;
}
NumericalDerivative& Genfun::GaudiMathImplementation::NumericalDerivative::operator= ( const NumericalDerivative )
private
Genfun::Derivative Genfun::GaudiMathImplementation::NumericalDerivative::partial ( unsigned int  index) const
virtual

Derivatives.

Definition at line 104 of file NumericalDerivative.cpp.

{
if( idx >= m_DIM )
{ Exception ( "::partial(i): invalid variable index" ) ; }
const AbsFunction& aux =
NumericalDerivative( *this , idx , type() ) ;
return FunctionNoop( &aux ) ;
}
double Genfun::GaudiMathImplementation::NumericalDerivative::result ( ) const
inline

the result of the last call

Definition at line 124 of file NumericalDerivative.h.

{ return m_result ; }
const NumericalDerivative::Type & Genfun::GaudiMathImplementation::NumericalDerivative::setType ( const Type value)

change the type of the adaptive differentiation

Definition at line 97 of file NumericalDerivative.cpp.

{ m_type = value ; return type() ; }
const Type& Genfun::GaudiMathImplementation::NumericalDerivative::type ( ) const
inline

type

Definition at line 118 of file NumericalDerivative.h.

{ return m_type ; }

Member Data Documentation

Argument Genfun::GaudiMathImplementation::NumericalDerivative::m_argument
mutableprivate

Definition at line 147 of file NumericalDerivative.h.

size_t Genfun::GaudiMathImplementation::NumericalDerivative::m_DIM
private

Definition at line 144 of file NumericalDerivative.h.

double Genfun::GaudiMathImplementation::NumericalDerivative::m_error
mutableprivate

Definition at line 149 of file NumericalDerivative.h.

const AbsFunction* Genfun::GaudiMathImplementation::NumericalDerivative::m_function
private

Definition at line 142 of file NumericalDerivative.h.

size_t Genfun::GaudiMathImplementation::NumericalDerivative::m_index
private

Definition at line 143 of file NumericalDerivative.h.

double Genfun::GaudiMathImplementation::NumericalDerivative::m_result
mutableprivate

Definition at line 148 of file NumericalDerivative.h.

Type Genfun::GaudiMathImplementation::NumericalDerivative::m_type
private

Definition at line 145 of file NumericalDerivative.h.


The documentation for this class was generated from the following files:

Generated at Wed Nov 28 2012 12:17:41 for Gaudi Framework, version v23r5 by Doxygen version 1.8.2 written by Dimitri van Heesch, © 1997-2004