8 #include "gsl/gsl_blas.h" 9 #include "gsl/gsl_errno.h" 10 #include "gsl/gsl_linalg.h" 11 #include "gsl/gsl_math.h" 12 #include "gsl/gsl_matrix.h" 13 #include "gsl/gsl_multimin.h" 14 #include "gsl/gsl_vector.h" 21 using namespace CLHEP;
33 : m_argum( arg ), m_eq( &func ), m_grad() {
34 const size_t N = func.dimensionality();
36 for (
size_t i = 0; i <
N; ++i ) {
37 Genfun::GENFUNCTION
fun = func.partial( i );
38 m_grad.push_back( fun.clone() );
45 double fun_gsl(
const gsl_vector* v,
void* params ) {
47 const FuncMinimum::GenFunc& eq = *( local->
equation() );
50 for (
unsigned int i = 0; i < v->size; ++i ) { arg[i] = gsl_vector_get( v, i ); }
56 void dfun_gsl(
const gsl_vector* v,
void* params, gsl_vector* df ) {
61 for (
unsigned int i = 0; i < v->size; ++i ) { arg[i] = gsl_vector_get( v, i ); }
63 for (
unsigned int i = 0; i < df->size; ++i ) {
64 Genfun::GENFUNCTION f = *( grad[i] );
65 gsl_vector_set( df, i, f( arg ) );
71 void fdfun_gsl(
const gsl_vector* v,
void* params,
double* f, gsl_vector* df ) {
72 *f = fun_gsl( v, params );
73 dfun_gsl( v, params, df );
87 gsl_vector_view vect = gsl_vector_view_array( &arg[0], arg.dimension() );
88 FuncMinimumMisc local( func, arg );
90 gsl_multimin_function_fdf
function;
92 function.f = &fun_gsl;
93 function.df = &dfun_gsl;
94 function.fdf = &fdfun_gsl;
95 function.n = vect.vector.size;
96 function.params = (
void*)&local;
100 const gsl_multimin_fdfminimizer_type* T =
m_type;
102 gsl_multimin_fdfminimizer*
s;
104 s = gsl_multimin_fdfminimizer_alloc( T, vect.vector.size );
106 gsl_multimin_fdfminimizer_set( s, &
function, &vect.vector, m_step_size, m_tol );
109 status = gsl_multimin_fdfminimizer_iterate( s );
112 return Error(
"Error from gsl_multimin_fdfminimizer_iterate '" +
std::string( gsl_strerror( status ) ) +
"'" );
115 status = gsl_multimin_test_gradient( s->gradient, m_norm_gradient );
117 if ( status != GSL_CONTINUE ) {
break; }
120 for (
unsigned int i = 0; i < vect.vector.size; ++i ) {
121 gsl_vector_set( &vect.vector, i, gsl_vector_get( s->x, i ) );
124 if ( status == GSL_SUCCESS ) {
125 debug() <<
"We stopped in the method on the " << iter <<
" iteration (we have maximum " << m_max_iter
126 <<
" iterations)" <<
endmsg;
128 msgStream() <<
"The Euclidean norm of gradient = " << gsl_blas_dnrm2( s->gradient )
129 <<
" by the absolute tolerance = " << m_norm_gradient <<
endmsg;
130 }
else if ( status == GSL_CONTINUE && iter <= m_max_iter ) {
131 return Error(
"Method finished with '" +
std::string( gsl_strerror( status ) ) +
"' error" );
133 return Error(
"Method finished with '" +
std::string( gsl_strerror( status ) ) +
"' error" );
136 gsl_multimin_fdfminimizer_free( s );
138 if ( status ) {
return Error(
"Method finished with '" +
std::string( gsl_strerror( status ) ) +
"' error" ); }
158 HepSymMatrix cov( arg.dimension(), 0 );
159 for (
unsigned int i = 0; i < arg.dimension(); ++i ) {
160 auto f = func.partial( i );
161 for (
unsigned int j = i; j < arg.dimension(); ++j ) {
162 auto fij = f.partial( j );
163 cov( i + 1, j + 1 ) = 0.5 * fij( arg );
168 covar = cov.inverse( inv );
178 if ( sc.
isFailure() ) {
return Error(
"Could not initialize base class GaudiTool", sc ); }
182 m_type = gsl_multimin_fdfminimizer_conjugate_fr;
183 debug() <<
"Minimization algorithm to be used: " 184 <<
"'gsl_multimin_fdfminimizer_conjugate_fr'" <<
endmsg;
185 }
else if (
"conjugate_pr" ==
m_algType ) {
186 m_type = gsl_multimin_fdfminimizer_conjugate_pr;
187 debug() <<
"Minimization algorithm to be used: " 188 <<
"'gsl_multimin_fdfminimizer_conjugate_pr'" <<
endmsg;
189 }
else if (
"vector_bfgs" ==
m_algType ) {
190 m_type = gsl_multimin_fdfminimizer_vector_bfgs;
191 debug() <<
"Minimization algorithm to be used: " 192 <<
"'gsl_multimin_fdfminimizer_vector_bfgs'" <<
endmsg;
193 }
else if (
"steepest_descent" ==
m_algType ) {
194 m_type = gsl_multimin_fdfminimizer_steepest_descent;
195 debug() <<
"Minimization algorithm to be used: " 196 <<
"'gsl_multimin_fdfminimizer_steepest_descent'" <<
endmsg;
Genfun::Argument Arg
Argument of function "GenFunc" (.
constexpr static const auto SUCCESS
const Arg & argument() const
const GenFunc * equation() const
#define DECLARE_COMPONENT(type)
Gaudi::Property< std::string > m_algType
Gaudi::Property< double > m_max_iter
This class is used for returning status codes from appropriate routines.
Genfun::AbsFunction GenFunc
Function which we minimize (.
CLHEP::HepSymMatrix Covariance
Covariance matrix (matrix of error) (.
The simplest concrete implementation of IFuncMinimum interface.
const Gradient & gradient() const
StatusCode minimum(const GenFunc &func, Arg &arg) const override
Find minimum of the function "GenFunc".
double fun(const std::vector< double > &x)
const gsl_multiroot_fdfsolver_type * m_type
code_t getCode() const
Retrieve value ("checks" the StatusCode)
MsgStream & endmsg(MsgStream &s)
MsgStream Modifier: endmsg. Calls the output method of the MsgStream.
StatusCode initialize() override
Overriding initialize.