The Gaudi Framework  v30r3 (a5ef0a68)
FuncMinimum.cpp
Go to the documentation of this file.
1 // Include files
2 
3 #include <cstdio>
4 #include <cstdlib>
5 // from Gaudi
7 // from GSL
8 #include "gsl/gsl_blas.h"
9 #include "gsl/gsl_errno.h"
10 #include "gsl/gsl_linalg.h"
11 #include "gsl/gsl_math.h"
12 #include "gsl/gsl_matrix.h"
13 #include "gsl/gsl_multimin.h"
14 #include "gsl/gsl_vector.h"
15 
16 // local
17 #include "FuncMinimum.h"
18 
19 // Handle CLHEP 2.0.x move to CLHEP namespace
20 namespace CLHEP
21 {
22 }
23 using namespace CLHEP;
24 
32 // ============================================================================
33 // ============================================================================
34 FuncMinimum::FuncMinimumMisc::FuncMinimumMisc( const FuncMinimum::GenFunc& func, FuncMinimum::Arg& arg )
35  : m_argum( arg ), m_eq( &func ), m_grad()
36 {
37  const size_t N = func.dimensionality();
38 
39  for ( size_t i = 0; i < N; ++i ) {
40  Genfun::GENFUNCTION fun = func.partial( i );
41  m_grad.push_back( fun.clone() );
42  }
43 }
44 //=============================================================================
45 namespace
46 {
47  using namespace Genfun;
49  double fun_gsl( const gsl_vector* v, void* params )
50  {
51  FuncMinimum::FuncMinimumMisc* local = static_cast<FuncMinimum::FuncMinimumMisc*>( params );
52  const FuncMinimum::GenFunc& eq = *( local->equation() );
53  Argument& arg = local->argument();
54 
55  for ( unsigned int i = 0; i < v->size; ++i ) {
56  arg[i] = gsl_vector_get( v, i );
57  }
58 
59  return eq( arg );
60  }
61 
63  void dfun_gsl( const gsl_vector* v, void* params, gsl_vector* df )
64  {
65  FuncMinimum::FuncMinimumMisc* local = static_cast<FuncMinimum::FuncMinimumMisc*>( params );
66  const FuncMinimum::Gradient& grad = local->gradient();
67  Argument& arg = local->argument();
68 
69  for ( unsigned int i = 0; i < v->size; ++i ) {
70  arg[i] = gsl_vector_get( v, i );
71  }
72 
73  for ( unsigned int i = 0; i < df->size; ++i ) {
74  Genfun::GENFUNCTION f = *( grad[i] );
75  gsl_vector_set( df, i, f( arg ) );
76  }
77  }
78 
81  void fdfun_gsl( const gsl_vector* v, void* params, double* f, gsl_vector* df )
82  {
83  *f = fun_gsl( v, params );
84  dfun_gsl( v, params, df );
85  }
86 }
87 
88 //=============================================================================
94 //=============================================================================
95 {
96  using namespace Genfun;
97 
98  gsl_vector_view vect = gsl_vector_view_array( &arg[0], arg.dimension() );
99  FuncMinimumMisc local( func, arg );
100 
101  gsl_multimin_function_fdf function;
102 
103  function.f = &fun_gsl;
104  function.df = &dfun_gsl;
105  function.fdf = &fdfun_gsl;
106  function.n = vect.vector.size;
107  function.params = (void*)&local;
108 
109  size_t iter = 0;
110  int status = 0;
111  const gsl_multimin_fdfminimizer_type* T = m_type;
112 
113  gsl_multimin_fdfminimizer* s;
114 
115  s = gsl_multimin_fdfminimizer_alloc( T, vect.vector.size );
116 
117  gsl_multimin_fdfminimizer_set( s, &function, &vect.vector, m_step_size, m_tol );
118 
119  for ( iter = 0; iter < m_max_iter; ++iter ) {
120  status = gsl_multimin_fdfminimizer_iterate( s );
121 
122  if ( status ) {
123  return Error( "Error from gsl_multimin_fdfminimizer_iterate '" + std::string( gsl_strerror( status ) ) + "'" );
124  }
125 
126  status = gsl_multimin_test_gradient( s->gradient, m_norm_gradient );
127 
128  if ( status != GSL_CONTINUE ) {
129  break;
130  }
131  }
132 
133  for ( unsigned int i = 0; i < vect.vector.size; ++i ) {
134  gsl_vector_set( &vect.vector, i, gsl_vector_get( s->x, i ) );
135  }
136 
137  if ( status == GSL_SUCCESS ) {
138  debug() << "We stopped in the method on the " << iter << " iteration (we have maximum " << m_max_iter
139  << " iterations)" << endmsg;
140 
141  msgStream() << "The Euclidean norm of gradient = " << gsl_blas_dnrm2( s->gradient )
142  << " by the absolute tolerance = " << m_norm_gradient << endmsg;
143  } else if ( status == GSL_CONTINUE && iter <= m_max_iter ) {
144  return Error( "Method finished with '" + std::string( gsl_strerror( status ) ) + "' error" );
145  } else {
146  return Error( "Method finished with '" + std::string( gsl_strerror( status ) ) + "' error" );
147  }
148 
149  gsl_multimin_fdfminimizer_free( s );
150 
151  if ( status ) {
152  return Error( "Method finished with '" + std::string( gsl_strerror( status ) ) + "' error" );
153  }
154 
155  return StatusCode::SUCCESS;
156 }
157 
158 //=============================================================================
164  IFuncMinimum::Covariance& covar ) const
165 //=============================================================================
166 {
168  StatusCode sc = minimum( func, arg );
169 
170  if ( sc.isFailure() ) {
171  return Error( "MINIMUM IS NOT FOUND. StatusCode = '" + std::to_string( sc.getCode() ) + '\'', sc );
172  }
173  HepSymMatrix cov( arg.dimension(), 0 );
174  for ( unsigned int i = 0; i < arg.dimension(); ++i ) {
175  auto f = func.partial( i );
176  for ( unsigned int j = i; j < arg.dimension(); ++j ) {
177  auto fij = f.partial( j );
178  cov( i + 1, j + 1 ) = 0.5 * fij( arg );
179  }
180  }
181 
182  int inv;
183  covar = cov.inverse( inv );
184  return inv == 0 ? StatusCode::SUCCESS : Error( "Matrix of Error is not complete successful" );
185 }
186 
187 //=============================================================================
189 
190 {
192 
193  if ( sc.isFailure() ) {
194  return Error( "Could not initialize base class GaudiTool", sc );
195  }
196 
198  if ( "conjugate_fr" == m_algType ) {
199  m_type = gsl_multimin_fdfminimizer_conjugate_fr;
200  debug() << "Minimization algorithm to be used: "
201  << "'gsl_multimin_fdfminimizer_conjugate_fr'" << endmsg;
202  } else if ( "conjugate_pr" == m_algType ) {
203  m_type = gsl_multimin_fdfminimizer_conjugate_pr;
204  debug() << "Minimization algorithm to be used: "
205  << "'gsl_multimin_fdfminimizer_conjugate_pr'" << endmsg;
206  } else if ( "vector_bfgs" == m_algType ) {
207  m_type = gsl_multimin_fdfminimizer_vector_bfgs;
208  debug() << "Minimization algorithm to be used: "
209  << "'gsl_multimin_fdfminimizer_vector_bfgs'" << endmsg;
210  } else if ( "steepest_descent" == m_algType ) {
211  m_type = gsl_multimin_fdfminimizer_steepest_descent;
212  debug() << "Minimization algorithm to be used: "
213  << "'gsl_multimin_fdfminimizer_steepest_descent'" << endmsg;
214  } else {
215  return Error( " Unknown algorithm type '" + m_algType + "'" );
216  }
217 
218  return StatusCode::SUCCESS;
219 }
220 //=============================================================================
221 
222 // Declaration of the Tool Factory
Genfun::Argument Arg
Argument of function "GenFunc" (.
Definition: IFuncMinimum.h:35
T to_string(T...args)
const Arg & argument() const
Definition: FuncMinimum.h:54
const GenFunc * equation() const
Definition: FuncMinimum.h:56
bool isFailure() const
Definition: StatusCode.h:139
STL class.
#define DECLARE_COMPONENT(type)
Gaudi::Property< std::string > m_algType
Definition: EqSolver.h:81
int N
Definition: IOTest.py:101
Gaudi::Property< double > m_max_iter
Definition: EqSolver.h:83
This class is used for returning status codes from appropriate routines.
Definition: StatusCode.h:51
Genfun::AbsFunction GenFunc
Function which we minimize (.
Definition: IFuncMinimum.h:33
CLHEP::HepSymMatrix Covariance
Covariance matrix (matrix of error) (.
Definition: IFuncMinimum.h:37
The simplest concrete implementation of IFuncMinimum interface.
Definition: FuncMinimum.h:24
constexpr static const auto SUCCESS
Definition: StatusCode.h:87
const Gradient & gradient() const
Definition: FuncMinimum.h:57
MsgStream & debug() const
shortcut for the method msgStream(MSG::DEBUG)
StatusCode Error(const std::string &msg, const StatusCode st=StatusCode::FAILURE, const size_t mx=10) const
Print the error message and return with the given StatusCode.
Definition: GaudiTool.h:682
StatusCode minimum(const GenFunc &func, Arg &arg) const override
Find minimum of the function "GenFunc".
double fun(const std::vector< double > &x)
Definition: PFuncTest.cpp:26
MsgStream & msgStream() const
Return an uninitialized MsgStream.
string s
Definition: gaudirun.py:253
const gsl_multiroot_fdfsolver_type * m_type
Definition: EqSolver.h:86
code_t getCode() const
Retrieve value ("checks" the StatusCode)
Definition: StatusCode.h:146
MsgStream & endmsg(MsgStream &s)
MsgStream Modifier: endmsg. Calls the output method of the MsgStream.
Definition: MsgStream.h:209
StatusCode initialize() override
standard initialization method
Definition: GaudiTool.cpp:151
StatusCode initialize() override
Overriding initialize.